Loading…
Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation
We introduce a novel workflow, TiCoder, designed to enhance the trust and accuracy of LLM-based code generation through interactive and guided intent formalization. TiCoder partially formalizes ambiguous intent in natural language prompts by generating a set of tests to distinguish common divergent...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 391 |
container_issue | |
container_start_page | 390 |
container_title | |
container_volume | |
creator | Fakhoury, Sarah Naik, Aaditya Sakkas, Georgios Chakraborty, Saikat Musuvathi, Madan Lahiri, Shuvendu |
description | We introduce a novel workflow, TiCoder, designed to enhance the trust and accuracy of LLM-based code generation through interactive and guided intent formalization. TiCoder partially formalizes ambiguous intent in natural language prompts by generating a set of tests to distinguish common divergent behaviours in generated code suggestions. We evaluate the code generation accuracy improvements provided by TiCoder at scale across four competitive LLMs, and evaluate the cost-benefit trade off of evaluating tests surfaced by TiCoder through a user study with 15 participants. |
doi_str_mv | 10.1145/3639478.3643525 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10554982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10554982</ieee_id><sourcerecordid>acm_books_10_1145_3639478_3643525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1625-185e834bbbff14e53ee5689721d3303d07be0738599fd2662cd786cd93cb3e4d3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURQ0Iiap0ZmHwyJJix3Zss6EqlEpBDLRzZMcvYJEmlZ1W9N-TfkxMTG8491zpXYTuKJlSysUjy5jmUk1ZxplIxQWaaKkVJ0QSQVJ6iUapkDyhmvGrP-wGTWL0lggxJKiWI7TNfzZNF3z7ifsvwHldQ9X7HbQQI-5qXBRv2JoIDi8h9okLB4YXbQ_BHIN41jnA80EIpvdd-4RXEQL-6Lduj03rcL7e-OAr0-B8Z5rtMXSLrmvTRJic7xitXvLl7DUp3ueL2XORGJqlIqFKgGLcWlvXlINgACJTWqbUMUaYI9ICkUwJrWuXZllaOamyymlWWQbcsTG6P_V6ACg3wa9N2Jd0-J9rlQ54esKmWpe2677jwMrDyOV55PI8cmmDh3oQHv4psF8mUXgX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation</title><source>IEEE Xplore All Conference Series</source><creator>Fakhoury, Sarah ; Naik, Aaditya ; Sakkas, Georgios ; Chakraborty, Saikat ; Musuvathi, Madan ; Lahiri, Shuvendu</creator><creatorcontrib>Fakhoury, Sarah ; Naik, Aaditya ; Sakkas, Georgios ; Chakraborty, Saikat ; Musuvathi, Madan ; Lahiri, Shuvendu</creatorcontrib><description>We introduce a novel workflow, TiCoder, designed to enhance the trust and accuracy of LLM-based code generation through interactive and guided intent formalization. TiCoder partially formalizes ambiguous intent in natural language prompts by generating a set of tests to distinguish common divergent behaviours in generated code suggestions. We evaluate the code generation accuracy improvements provided by TiCoder at scale across four competitive LLMs, and evaluate the cost-benefit trade off of evaluating tests surfaced by TiCoder through a user study with 15 participants.</description><identifier>ISBN: 9798400705021</identifier><identifier>EISSN: 2574-1934</identifier><identifier>EISBN: 9798400705021</identifier><identifier>DOI: 10.1145/3639478.3643525</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Accuracy ; Codes ; LLM4Code ; Natural languages ; Software engineering ; User intent formulation ; user study</subject><ispartof>2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), 2024, p.390-391</ispartof><rights>2024 Copyright held by the owner/author(s)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8486-7749 ; 0000-0002-3100-0455 ; 0000-0002-2482-7892 ; 0000-0002-6889-7171 ; 0000-0002-1071-8038 ; 0000-0002-4446-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10554982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10554982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fakhoury, Sarah</creatorcontrib><creatorcontrib>Naik, Aaditya</creatorcontrib><creatorcontrib>Sakkas, Georgios</creatorcontrib><creatorcontrib>Chakraborty, Saikat</creatorcontrib><creatorcontrib>Musuvathi, Madan</creatorcontrib><creatorcontrib>Lahiri, Shuvendu</creatorcontrib><title>Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation</title><title>2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)</title><addtitle>ICSE-COMPANION</addtitle><description>We introduce a novel workflow, TiCoder, designed to enhance the trust and accuracy of LLM-based code generation through interactive and guided intent formalization. TiCoder partially formalizes ambiguous intent in natural language prompts by generating a set of tests to distinguish common divergent behaviours in generated code suggestions. We evaluate the code generation accuracy improvements provided by TiCoder at scale across four competitive LLMs, and evaluate the cost-benefit trade off of evaluating tests surfaced by TiCoder through a user study with 15 participants.</description><subject>Accuracy</subject><subject>Codes</subject><subject>LLM4Code</subject><subject>Natural languages</subject><subject>Software engineering</subject><subject>User intent formulation</subject><subject>user study</subject><issn>2574-1934</issn><isbn>9798400705021</isbn><isbn>9798400705021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkD1PwzAURQ0Iiap0ZmHwyJJix3Zss6EqlEpBDLRzZMcvYJEmlZ1W9N-TfkxMTG8491zpXYTuKJlSysUjy5jmUk1ZxplIxQWaaKkVJ0QSQVJ6iUapkDyhmvGrP-wGTWL0lggxJKiWI7TNfzZNF3z7ifsvwHldQ9X7HbQQI-5qXBRv2JoIDi8h9okLB4YXbQ_BHIN41jnA80EIpvdd-4RXEQL-6Lduj03rcL7e-OAr0-B8Z5rtMXSLrmvTRJic7xitXvLl7DUp3ueL2XORGJqlIqFKgGLcWlvXlINgACJTWqbUMUaYI9ICkUwJrWuXZllaOamyymlWWQbcsTG6P_V6ACg3wa9N2Jd0-J9rlQ54esKmWpe2677jwMrDyOV55PI8cmmDh3oQHv4psF8mUXgX</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Fakhoury, Sarah</creator><creator>Naik, Aaditya</creator><creator>Sakkas, Georgios</creator><creator>Chakraborty, Saikat</creator><creator>Musuvathi, Madan</creator><creator>Lahiri, Shuvendu</creator><general>ACM</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0002-8486-7749</orcidid><orcidid>https://orcid.org/0000-0002-3100-0455</orcidid><orcidid>https://orcid.org/0000-0002-2482-7892</orcidid><orcidid>https://orcid.org/0000-0002-6889-7171</orcidid><orcidid>https://orcid.org/0000-0002-1071-8038</orcidid><orcidid>https://orcid.org/0000-0002-4446-4777</orcidid></search><sort><creationdate>20240414</creationdate><title>Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation</title><author>Fakhoury, Sarah ; Naik, Aaditya ; Sakkas, Georgios ; Chakraborty, Saikat ; Musuvathi, Madan ; Lahiri, Shuvendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1625-185e834bbbff14e53ee5689721d3303d07be0738599fd2662cd786cd93cb3e4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Codes</topic><topic>LLM4Code</topic><topic>Natural languages</topic><topic>Software engineering</topic><topic>User intent formulation</topic><topic>user study</topic><toplevel>online_resources</toplevel><creatorcontrib>Fakhoury, Sarah</creatorcontrib><creatorcontrib>Naik, Aaditya</creatorcontrib><creatorcontrib>Sakkas, Georgios</creatorcontrib><creatorcontrib>Chakraborty, Saikat</creatorcontrib><creatorcontrib>Musuvathi, Madan</creatorcontrib><creatorcontrib>Lahiri, Shuvendu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fakhoury, Sarah</au><au>Naik, Aaditya</au><au>Sakkas, Georgios</au><au>Chakraborty, Saikat</au><au>Musuvathi, Madan</au><au>Lahiri, Shuvendu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation</atitle><btitle>2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)</btitle><stitle>ICSE-COMPANION</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>390</spage><epage>391</epage><pages>390-391</pages><eissn>2574-1934</eissn><isbn>9798400705021</isbn><eisbn>9798400705021</eisbn><coden>IEEPAD</coden><abstract>We introduce a novel workflow, TiCoder, designed to enhance the trust and accuracy of LLM-based code generation through interactive and guided intent formalization. TiCoder partially formalizes ambiguous intent in natural language prompts by generating a set of tests to distinguish common divergent behaviours in generated code suggestions. We evaluate the code generation accuracy improvements provided by TiCoder at scale across four competitive LLMs, and evaluate the cost-benefit trade off of evaluating tests surfaced by TiCoder through a user study with 15 participants.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3639478.3643525</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-8486-7749</orcidid><orcidid>https://orcid.org/0000-0002-3100-0455</orcidid><orcidid>https://orcid.org/0000-0002-2482-7892</orcidid><orcidid>https://orcid.org/0000-0002-6889-7171</orcidid><orcidid>https://orcid.org/0000-0002-1071-8038</orcidid><orcidid>https://orcid.org/0000-0002-4446-4777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9798400705021 |
ispartof | 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), 2024, p.390-391 |
issn | 2574-1934 |
language | eng |
recordid | cdi_ieee_primary_10554982 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Codes LLM4Code Natural languages Software engineering User intent formulation user study |
title | Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation: User Study and Empirical Evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20the%20Effectiveness%20of%20LLM%20based%20Test-driven%20Interactive%20Code%20Generation:%20User%20Study%20and%20Empirical%20Evaluation&rft.btitle=2024%20IEEE/ACM%2046th%20International%20Conference%20on%20Software%20Engineering:%20Companion%20Proceedings%20(ICSE-Companion)&rft.au=Fakhoury,%20Sarah&rft.date=2024-04-14&rft.spage=390&rft.epage=391&rft.pages=390-391&rft.eissn=2574-1934&rft.isbn=9798400705021&rft.coden=IEEPAD&rft_id=info:doi/10.1145/3639478.3643525&rft.eisbn=9798400705021&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1145_3639478_3643525%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1625-185e834bbbff14e53ee5689721d3303d07be0738599fd2662cd786cd93cb3e4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10554982&rfr_iscdi=true |