Loading…
Time Series Problems in the Energy Sector
Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 118 |
container_issue | |
container_start_page | 113 |
container_title | |
container_volume | |
creator | Dalamagkas, Christos Georgakis, Angelos Papadopoulos, Ioannis Hrissagis-Chrysagis, Kostas Papadakis, George |
description | Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements. |
doi_str_mv | 10.1109/ICDEW61823.2024.00021 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10555110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10555110</ieee_id><sourcerecordid>10555110</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363</originalsourceid><addsrcrecordid>eNotj01Lw0AURUehYKn5BwrZukh8b95kPpYSoxYKCq24LDPJi440rUyy6b83oKu7uIfLuULcIpSI4O7X9WPzodFKKiVIVQKAxAuROeMsVUBWAeGlWEplqCDl4Epk4_g9Y6glorNLcbeLA-dbTpHH_C2dwoGHMY_HfPrivDly-jzPbTud0rVY9P4wcvafK_H-1Ozql2Lz-ryuHzZFRFJTwa32bat6a63xnbcM0HdB6p568kgBsJu9tDI6OGyDs4zGh847X3nrSNNK3PztRmbe_6Q4-HTeI1RVNZ-mX-uIQpc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time Series Problems in the Energy Sector</title><source>IEEE Xplore All Conference Series</source><creator>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</creator><creatorcontrib>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</creatorcontrib><description>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</description><identifier>EISSN: 2473-3490</identifier><identifier>EISBN: 9798350384031</identifier><identifier>DOI: 10.1109/ICDEW61823.2024.00021</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>data analytics ; Digital transformation ; energy sector ; Europe ; machine learning ; Power industry ; Renewable energy sources ; Thermal management ; time series ; Time series analysis ; Transforms</subject><ispartof>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW), 2024, p.113-118</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10555110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10555110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dalamagkas, Christos</creatorcontrib><creatorcontrib>Georgakis, Angelos</creatorcontrib><creatorcontrib>Papadopoulos, Ioannis</creatorcontrib><creatorcontrib>Hrissagis-Chrysagis, Kostas</creatorcontrib><creatorcontrib>Papadakis, George</creatorcontrib><title>Time Series Problems in the Energy Sector</title><title>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)</title><addtitle>ICDEW</addtitle><description>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</description><subject>data analytics</subject><subject>Digital transformation</subject><subject>energy sector</subject><subject>Europe</subject><subject>machine learning</subject><subject>Power industry</subject><subject>Renewable energy sources</subject><subject>Thermal management</subject><subject>time series</subject><subject>Time series analysis</subject><subject>Transforms</subject><issn>2473-3490</issn><isbn>9798350384031</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURUehYKn5BwrZukh8b95kPpYSoxYKCq24LDPJi440rUyy6b83oKu7uIfLuULcIpSI4O7X9WPzodFKKiVIVQKAxAuROeMsVUBWAeGlWEplqCDl4Epk4_g9Y6glorNLcbeLA-dbTpHH_C2dwoGHMY_HfPrivDly-jzPbTud0rVY9P4wcvafK_H-1Ozql2Lz-ryuHzZFRFJTwa32bat6a63xnbcM0HdB6p568kgBsJu9tDI6OGyDs4zGh847X3nrSNNK3PztRmbe_6Q4-HTeI1RVNZ-mX-uIQpc</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Dalamagkas, Christos</creator><creator>Georgakis, Angelos</creator><creator>Papadopoulos, Ioannis</creator><creator>Hrissagis-Chrysagis, Kostas</creator><creator>Papadakis, George</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240513</creationdate><title>Time Series Problems in the Energy Sector</title><author>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>data analytics</topic><topic>Digital transformation</topic><topic>energy sector</topic><topic>Europe</topic><topic>machine learning</topic><topic>Power industry</topic><topic>Renewable energy sources</topic><topic>Thermal management</topic><topic>time series</topic><topic>Time series analysis</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Dalamagkas, Christos</creatorcontrib><creatorcontrib>Georgakis, Angelos</creatorcontrib><creatorcontrib>Papadopoulos, Ioannis</creatorcontrib><creatorcontrib>Hrissagis-Chrysagis, Kostas</creatorcontrib><creatorcontrib>Papadakis, George</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalamagkas, Christos</au><au>Georgakis, Angelos</au><au>Papadopoulos, Ioannis</au><au>Hrissagis-Chrysagis, Kostas</au><au>Papadakis, George</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time Series Problems in the Energy Sector</atitle><btitle>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)</btitle><stitle>ICDEW</stitle><date>2024-05-13</date><risdate>2024</risdate><spage>113</spage><epage>118</epage><pages>113-118</pages><eissn>2473-3490</eissn><eisbn>9798350384031</eisbn><coden>IEEPAD</coden><abstract>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</abstract><pub>IEEE</pub><doi>10.1109/ICDEW61823.2024.00021</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-3490 |
ispartof | 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW), 2024, p.113-118 |
issn | 2473-3490 |
language | eng |
recordid | cdi_ieee_primary_10555110 |
source | IEEE Xplore All Conference Series |
subjects | data analytics Digital transformation energy sector Europe machine learning Power industry Renewable energy sources Thermal management time series Time series analysis Transforms |
title | Time Series Problems in the Energy Sector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20Series%20Problems%20in%20the%20Energy%20Sector&rft.btitle=2024%20IEEE%2040th%20International%20Conference%20on%20Data%20Engineering%20Workshops%20(ICDEW)&rft.au=Dalamagkas,%20Christos&rft.date=2024-05-13&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.eissn=2473-3490&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDEW61823.2024.00021&rft.eisbn=9798350384031&rft_dat=%3Cieee_CHZPO%3E10555110%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10555110&rfr_iscdi=true |