Loading…

Time Series Problems in the Energy Sector

Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which...

Full description

Saved in:
Bibliographic Details
Main Authors: Dalamagkas, Christos, Georgakis, Angelos, Papadopoulos, Ioannis, Hrissagis-Chrysagis, Kostas, Papadakis, George
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 118
container_issue
container_start_page 113
container_title
container_volume
creator Dalamagkas, Christos
Georgakis, Angelos
Papadopoulos, Ioannis
Hrissagis-Chrysagis, Kostas
Papadakis, George
description Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.
doi_str_mv 10.1109/ICDEW61823.2024.00021
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10555110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10555110</ieee_id><sourcerecordid>10555110</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363</originalsourceid><addsrcrecordid>eNotj01Lw0AURUehYKn5BwrZukh8b95kPpYSoxYKCq24LDPJi440rUyy6b83oKu7uIfLuULcIpSI4O7X9WPzodFKKiVIVQKAxAuROeMsVUBWAeGlWEplqCDl4Epk4_g9Y6glorNLcbeLA-dbTpHH_C2dwoGHMY_HfPrivDly-jzPbTud0rVY9P4wcvafK_H-1Ozql2Lz-ryuHzZFRFJTwa32bat6a63xnbcM0HdB6p568kgBsJu9tDI6OGyDs4zGh847X3nrSNNK3PztRmbe_6Q4-HTeI1RVNZ-mX-uIQpc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time Series Problems in the Energy Sector</title><source>IEEE Xplore All Conference Series</source><creator>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</creator><creatorcontrib>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</creatorcontrib><description>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&amp;D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</description><identifier>EISSN: 2473-3490</identifier><identifier>EISBN: 9798350384031</identifier><identifier>DOI: 10.1109/ICDEW61823.2024.00021</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>data analytics ; Digital transformation ; energy sector ; Europe ; machine learning ; Power industry ; Renewable energy sources ; Thermal management ; time series ; Time series analysis ; Transforms</subject><ispartof>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW), 2024, p.113-118</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10555110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10555110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dalamagkas, Christos</creatorcontrib><creatorcontrib>Georgakis, Angelos</creatorcontrib><creatorcontrib>Papadopoulos, Ioannis</creatorcontrib><creatorcontrib>Hrissagis-Chrysagis, Kostas</creatorcontrib><creatorcontrib>Papadakis, George</creatorcontrib><title>Time Series Problems in the Energy Sector</title><title>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)</title><addtitle>ICDEW</addtitle><description>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&amp;D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</description><subject>data analytics</subject><subject>Digital transformation</subject><subject>energy sector</subject><subject>Europe</subject><subject>machine learning</subject><subject>Power industry</subject><subject>Renewable energy sources</subject><subject>Thermal management</subject><subject>time series</subject><subject>Time series analysis</subject><subject>Transforms</subject><issn>2473-3490</issn><isbn>9798350384031</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURUehYKn5BwrZukh8b95kPpYSoxYKCq24LDPJi440rUyy6b83oKu7uIfLuULcIpSI4O7X9WPzodFKKiVIVQKAxAuROeMsVUBWAeGlWEplqCDl4Epk4_g9Y6glorNLcbeLA-dbTpHH_C2dwoGHMY_HfPrivDly-jzPbTud0rVY9P4wcvafK_H-1Ozql2Lz-ryuHzZFRFJTwa32bat6a63xnbcM0HdB6p568kgBsJu9tDI6OGyDs4zGh847X3nrSNNK3PztRmbe_6Q4-HTeI1RVNZ-mX-uIQpc</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Dalamagkas, Christos</creator><creator>Georgakis, Angelos</creator><creator>Papadopoulos, Ioannis</creator><creator>Hrissagis-Chrysagis, Kostas</creator><creator>Papadakis, George</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240513</creationdate><title>Time Series Problems in the Energy Sector</title><author>Dalamagkas, Christos ; Georgakis, Angelos ; Papadopoulos, Ioannis ; Hrissagis-Chrysagis, Kostas ; Papadakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>data analytics</topic><topic>Digital transformation</topic><topic>energy sector</topic><topic>Europe</topic><topic>machine learning</topic><topic>Power industry</topic><topic>Renewable energy sources</topic><topic>Thermal management</topic><topic>time series</topic><topic>Time series analysis</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Dalamagkas, Christos</creatorcontrib><creatorcontrib>Georgakis, Angelos</creatorcontrib><creatorcontrib>Papadopoulos, Ioannis</creatorcontrib><creatorcontrib>Hrissagis-Chrysagis, Kostas</creatorcontrib><creatorcontrib>Papadakis, George</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalamagkas, Christos</au><au>Georgakis, Angelos</au><au>Papadopoulos, Ioannis</au><au>Hrissagis-Chrysagis, Kostas</au><au>Papadakis, George</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time Series Problems in the Energy Sector</atitle><btitle>2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)</btitle><stitle>ICDEW</stitle><date>2024-05-13</date><risdate>2024</risdate><spage>113</spage><epage>118</epage><pages>113-118</pages><eissn>2473-3490</eissn><eisbn>9798350384031</eisbn><coden>IEEPAD</coden><abstract>Public Power Corporation (PPC) is the leading South East European electric utility, with its activities covering all aspects of the energy sector: from coal mining and the management of thermal power plants to renewables and e-mobility. PPC is implementing a major digital transformation plan, which aims to transform it into a data-driven company, thus improving the efficiency and effectiveness of its operations. To this end, PPC's R&amp;D department is working on addressing numerous data analytics tasks, which typically involve (multivariate) time series. In this work, we describe these tasks, stressing their business importance and criticality. We also briefly describe our current solutions and propose directions for future improvements.</abstract><pub>IEEE</pub><doi>10.1109/ICDEW61823.2024.00021</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-3490
ispartof 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW), 2024, p.113-118
issn 2473-3490
language eng
recordid cdi_ieee_primary_10555110
source IEEE Xplore All Conference Series
subjects data analytics
Digital transformation
energy sector
Europe
machine learning
Power industry
Renewable energy sources
Thermal management
time series
Time series analysis
Transforms
title Time Series Problems in the Energy Sector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20Series%20Problems%20in%20the%20Energy%20Sector&rft.btitle=2024%20IEEE%2040th%20International%20Conference%20on%20Data%20Engineering%20Workshops%20(ICDEW)&rft.au=Dalamagkas,%20Christos&rft.date=2024-05-13&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.eissn=2473-3490&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDEW61823.2024.00021&rft.eisbn=9798350384031&rft_dat=%3Cieee_CHZPO%3E10555110%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-ec6acc4f8887ada8e00fdb26f3f3a13b01d3846476b91cb98e17abda9a5a89363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10555110&rfr_iscdi=true