Loading…
High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks
The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformer...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nair, Vineeta Vasudevan P, Anilkumar James, Alex |
description | The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions. |
doi_str_mv | 10.1109/ISCAS58744.2024.10558533 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10558533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10558533</ieee_id><sourcerecordid>10558533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433</originalsourceid><addsrcrecordid>eNo1kMFOAjEUAKuJiYj8gYf-wGLb97rbHskGxQQ0EfBKWngLVdiattH498aol5nbHIYxLsVYSmFvH5btZKlNgzhWQuFYCq2NBjhjI9tYA1oACGvlORsoqU0ltdKX7CrnVyGUELUasOdZ2B_4SzwWtye-Sq7PXUwnSryN_S6UEHu-iH0oMYV-z9f5hws6pZBL-CA-3R4iXxZXiD9S-YzpLV-zi84dM43-PGTru-mqnVXzp_uHdjKvggQslQdNHkWj5U4hWoNeSiSrPQnpTOMaBOtpV5taeNlpqgEa9NQhbXWnEGDIbn67gYg27ymcXPra_D-Abz9TUa0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><source>IEEE Xplore All Conference Series</source><creator>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</creator><creatorcontrib>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</creatorcontrib><description>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</description><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9798350330991</identifier><identifier>DOI: 10.1109/ISCAS58744.2024.10558533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; detection ; Neural network ; Oil insulation ; Oils ; Real-time systems ; Shift registers ; Sparsity ; Stochasticity ; Support vector machines ; Transformers</subject><ispartof>2024 IEEE International Symposium on Circuits and Systems (ISCAS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10558533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10558533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nair, Vineeta Vasudevan</creatorcontrib><creatorcontrib>P, Anilkumar</creatorcontrib><creatorcontrib>James, Alex</creatorcontrib><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><title>2024 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</description><subject>Accuracy</subject><subject>detection</subject><subject>Neural network</subject><subject>Oil insulation</subject><subject>Oils</subject><subject>Real-time systems</subject><subject>Shift registers</subject><subject>Sparsity</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Transformers</subject><issn>2158-1525</issn><isbn>9798350330991</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFOAjEUAKuJiYj8gYf-wGLb97rbHskGxQQ0EfBKWngLVdiattH498aol5nbHIYxLsVYSmFvH5btZKlNgzhWQuFYCq2NBjhjI9tYA1oACGvlORsoqU0ltdKX7CrnVyGUELUasOdZ2B_4SzwWtye-Sq7PXUwnSryN_S6UEHu-iH0oMYV-z9f5hws6pZBL-CA-3R4iXxZXiD9S-YzpLV-zi84dM43-PGTru-mqnVXzp_uHdjKvggQslQdNHkWj5U4hWoNeSiSrPQnpTOMaBOtpV5taeNlpqgEa9NQhbXWnEGDIbn67gYg27ymcXPra_D-Abz9TUa0</recordid><startdate>20240519</startdate><enddate>20240519</enddate><creator>Nair, Vineeta Vasudevan</creator><creator>P, Anilkumar</creator><creator>James, Alex</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240519</creationdate><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><author>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>detection</topic><topic>Neural network</topic><topic>Oil insulation</topic><topic>Oils</topic><topic>Real-time systems</topic><topic>Shift registers</topic><topic>Sparsity</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Nair, Vineeta Vasudevan</creatorcontrib><creatorcontrib>P, Anilkumar</creatorcontrib><creatorcontrib>James, Alex</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nair, Vineeta Vasudevan</au><au>P, Anilkumar</au><au>James, Alex</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</atitle><btitle>2024 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2024-05-19</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2158-1525</eissn><eisbn>9798350330991</eisbn><abstract>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS58744.2024.10558533</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-1525 |
ispartof | 2024 IEEE International Symposium on Circuits and Systems (ISCAS), 2024, p.1-5 |
issn | 2158-1525 |
language | eng |
recordid | cdi_ieee_primary_10558533 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy detection Neural network Oil insulation Oils Real-time systems Shift registers Sparsity Stochasticity Support vector machines Transformers |
title | High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Voltage%20Transformer%20Condition%20Monitoring%20Using%20Memristive%20Echo%20State%20Networks&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Nair,%20Vineeta%20Vasudevan&rft.date=2024-05-19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2158-1525&rft_id=info:doi/10.1109/ISCAS58744.2024.10558533&rft.eisbn=9798350330991&rft_dat=%3Cieee_CHZPO%3E10558533%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10558533&rfr_iscdi=true |