Loading…

High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks

The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformer...

Full description

Saved in:
Bibliographic Details
Main Authors: Nair, Vineeta Vasudevan, P, Anilkumar, James, Alex
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Nair, Vineeta Vasudevan
P, Anilkumar
James, Alex
description The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.
doi_str_mv 10.1109/ISCAS58744.2024.10558533
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10558533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10558533</ieee_id><sourcerecordid>10558533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433</originalsourceid><addsrcrecordid>eNo1kMFOAjEUAKuJiYj8gYf-wGLb97rbHskGxQQ0EfBKWngLVdiattH498aol5nbHIYxLsVYSmFvH5btZKlNgzhWQuFYCq2NBjhjI9tYA1oACGvlORsoqU0ltdKX7CrnVyGUELUasOdZ2B_4SzwWtye-Sq7PXUwnSryN_S6UEHu-iH0oMYV-z9f5hws6pZBL-CA-3R4iXxZXiD9S-YzpLV-zi84dM43-PGTru-mqnVXzp_uHdjKvggQslQdNHkWj5U4hWoNeSiSrPQnpTOMaBOtpV5taeNlpqgEa9NQhbXWnEGDIbn67gYg27ymcXPra_D-Abz9TUa0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><source>IEEE Xplore All Conference Series</source><creator>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</creator><creatorcontrib>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</creatorcontrib><description>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</description><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9798350330991</identifier><identifier>DOI: 10.1109/ISCAS58744.2024.10558533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; detection ; Neural network ; Oil insulation ; Oils ; Real-time systems ; Shift registers ; Sparsity ; Stochasticity ; Support vector machines ; Transformers</subject><ispartof>2024 IEEE International Symposium on Circuits and Systems (ISCAS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10558533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10558533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nair, Vineeta Vasudevan</creatorcontrib><creatorcontrib>P, Anilkumar</creatorcontrib><creatorcontrib>James, Alex</creatorcontrib><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><title>2024 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</description><subject>Accuracy</subject><subject>detection</subject><subject>Neural network</subject><subject>Oil insulation</subject><subject>Oils</subject><subject>Real-time systems</subject><subject>Shift registers</subject><subject>Sparsity</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Transformers</subject><issn>2158-1525</issn><isbn>9798350330991</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFOAjEUAKuJiYj8gYf-wGLb97rbHskGxQQ0EfBKWngLVdiattH498aol5nbHIYxLsVYSmFvH5btZKlNgzhWQuFYCq2NBjhjI9tYA1oACGvlORsoqU0ltdKX7CrnVyGUELUasOdZ2B_4SzwWtye-Sq7PXUwnSryN_S6UEHu-iH0oMYV-z9f5hws6pZBL-CA-3R4iXxZXiD9S-YzpLV-zi84dM43-PGTru-mqnVXzp_uHdjKvggQslQdNHkWj5U4hWoNeSiSrPQnpTOMaBOtpV5taeNlpqgEa9NQhbXWnEGDIbn67gYg27ymcXPra_D-Abz9TUa0</recordid><startdate>20240519</startdate><enddate>20240519</enddate><creator>Nair, Vineeta Vasudevan</creator><creator>P, Anilkumar</creator><creator>James, Alex</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240519</creationdate><title>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</title><author>Nair, Vineeta Vasudevan ; P, Anilkumar ; James, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>detection</topic><topic>Neural network</topic><topic>Oil insulation</topic><topic>Oils</topic><topic>Real-time systems</topic><topic>Shift registers</topic><topic>Sparsity</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Nair, Vineeta Vasudevan</creatorcontrib><creatorcontrib>P, Anilkumar</creatorcontrib><creatorcontrib>James, Alex</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nair, Vineeta Vasudevan</au><au>P, Anilkumar</au><au>James, Alex</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks</atitle><btitle>2024 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2024-05-19</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2158-1525</eissn><eisbn>9798350330991</eisbn><abstract>The importance of intelligent transformers in the contemporary society cannot be overstated. Timely detection of damage or failure in transformers is crucial. This study evaluates many factors through the use of sensors that include oil level indicators, all of which are connected to the transformers. The data collected from these sensors is subsequently processed using a memristive Echo state network framework to monitor for errors. Two distinct ESN topologies, namely 'sparsely connected' and 'stochasticity improved reservoir connections', are utilized to ensure a precise prediction of the oil level in the transformer. By proactively detecting possible difficulties with the transformers, necessary steps may be swiftly initiated. Empirical findings demonstrate that the real-time forecasts for oil level and associated variables surpass alternative methods, exhibiting reduced error rates and enhanced precision in predictions.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS58744.2024.10558533</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-1525
ispartof 2024 IEEE International Symposium on Circuits and Systems (ISCAS), 2024, p.1-5
issn 2158-1525
language eng
recordid cdi_ieee_primary_10558533
source IEEE Xplore All Conference Series
subjects Accuracy
detection
Neural network
Oil insulation
Oils
Real-time systems
Shift registers
Sparsity
Stochasticity
Support vector machines
Transformers
title High Voltage Transformer Condition Monitoring Using Memristive Echo State Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Voltage%20Transformer%20Condition%20Monitoring%20Using%20Memristive%20Echo%20State%20Networks&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Nair,%20Vineeta%20Vasudevan&rft.date=2024-05-19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2158-1525&rft_id=info:doi/10.1109/ISCAS58744.2024.10558533&rft.eisbn=9798350330991&rft_dat=%3Cieee_CHZPO%3E10558533%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-b35eb40751d244984b114e95be01a87a7439bed6860b1f5e63374bef4ec5f2433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10558533&rfr_iscdi=true