Loading…
RAG-Based LLM Chatbot Using Llama-2
Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting v...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Vakayil, Sonia Juliet, D. Sujitha J, Anitha Vakayil, Sunil |
description | Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers. |
doi_str_mv | 10.1109/ICDCS59278.2024.10561020 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10561020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10561020</ieee_id><sourcerecordid>10561020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3</originalsourceid><addsrcrecordid>eNo1j81KAzEYAKMgWOq-gYeA56zfl_8ca9RaiAitPZckm-hKq9LsxbdXUGFgbgNDCEXoEcFdr_yt3yjHje05cNkjKI3A4YR0zjgrFPwgDZySGddSMrTAz0nX2hsACA7CgJ6Rq_ViyW5iKwMN4ZH61zilj4lu2_j-QsM-HiLjF-Ssxn0r3Z_nZHt_9-wfWHharvwisBGFnFgpHJyQtRrhqixVZy1TTA6s0DEnqyCXQYB0KauKWWrkg7KDrs66hKqKObn87Y6llN3ncTzE49fu_0t8A7gyP0M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RAG-Based LLM Chatbot Using Llama-2</title><source>IEEE Xplore All Conference Series</source><creator>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</creator><creatorcontrib>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</creatorcontrib><description>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</description><identifier>EISSN: 2644-1802</identifier><identifier>EISBN: 9798350350470</identifier><identifier>DOI: 10.1109/ICDCS59278.2024.10561020</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Buildings ; chatbot ; Chatbots ; Circuits and systems ; empathy ; harassment ; Llama-2 ; LLM ; Oral communication ; Productivity ; User experience</subject><ispartof>2024 7th International Conference on Devices, Circuits and Systems (ICDCS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10561020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10561020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vakayil, Sonia</creatorcontrib><creatorcontrib>Juliet, D. Sujitha</creatorcontrib><creatorcontrib>J, Anitha</creatorcontrib><creatorcontrib>Vakayil, Sunil</creatorcontrib><title>RAG-Based LLM Chatbot Using Llama-2</title><title>2024 7th International Conference on Devices, Circuits and Systems (ICDCS)</title><addtitle>ICDCS</addtitle><description>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</description><subject>Accuracy</subject><subject>Buildings</subject><subject>chatbot</subject><subject>Chatbots</subject><subject>Circuits and systems</subject><subject>empathy</subject><subject>harassment</subject><subject>Llama-2</subject><subject>LLM</subject><subject>Oral communication</subject><subject>Productivity</subject><subject>User experience</subject><issn>2644-1802</issn><isbn>9798350350470</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KAzEYAKMgWOq-gYeA56zfl_8ca9RaiAitPZckm-hKq9LsxbdXUGFgbgNDCEXoEcFdr_yt3yjHje05cNkjKI3A4YR0zjgrFPwgDZySGddSMrTAz0nX2hsACA7CgJ6Rq_ViyW5iKwMN4ZH61zilj4lu2_j-QsM-HiLjF-Ssxn0r3Z_nZHt_9-wfWHharvwisBGFnFgpHJyQtRrhqixVZy1TTA6s0DEnqyCXQYB0KauKWWrkg7KDrs66hKqKObn87Y6llN3ncTzE49fu_0t8A7gyP0M</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Vakayil, Sonia</creator><creator>Juliet, D. Sujitha</creator><creator>J, Anitha</creator><creator>Vakayil, Sunil</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240423</creationdate><title>RAG-Based LLM Chatbot Using Llama-2</title><author>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Buildings</topic><topic>chatbot</topic><topic>Chatbots</topic><topic>Circuits and systems</topic><topic>empathy</topic><topic>harassment</topic><topic>Llama-2</topic><topic>LLM</topic><topic>Oral communication</topic><topic>Productivity</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Vakayil, Sonia</creatorcontrib><creatorcontrib>Juliet, D. Sujitha</creatorcontrib><creatorcontrib>J, Anitha</creatorcontrib><creatorcontrib>Vakayil, Sunil</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vakayil, Sonia</au><au>Juliet, D. Sujitha</au><au>J, Anitha</au><au>Vakayil, Sunil</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RAG-Based LLM Chatbot Using Llama-2</atitle><btitle>2024 7th International Conference on Devices, Circuits and Systems (ICDCS)</btitle><stitle>ICDCS</stitle><date>2024-04-23</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2644-1802</eissn><eisbn>9798350350470</eisbn><abstract>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS59278.2024.10561020</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2644-1802 |
ispartof | 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), 2024, p.1-5 |
issn | 2644-1802 |
language | eng |
recordid | cdi_ieee_primary_10561020 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Buildings chatbot Chatbots Circuits and systems empathy harassment Llama-2 LLM Oral communication Productivity User experience |
title | RAG-Based LLM Chatbot Using Llama-2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RAG-Based%20LLM%20Chatbot%20Using%20Llama-2&rft.btitle=2024%207th%20International%20Conference%20on%20Devices,%20Circuits%20and%20Systems%20(ICDCS)&rft.au=Vakayil,%20Sonia&rft.date=2024-04-23&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2644-1802&rft_id=info:doi/10.1109/ICDCS59278.2024.10561020&rft.eisbn=9798350350470&rft_dat=%3Cieee_CHZPO%3E10561020%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10561020&rfr_iscdi=true |