Loading…

RAG-Based LLM Chatbot Using Llama-2

Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting v...

Full description

Saved in:
Bibliographic Details
Main Authors: Vakayil, Sonia, Juliet, D. Sujitha, J, Anitha, Vakayil, Sunil
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Vakayil, Sonia
Juliet, D. Sujitha
J, Anitha
Vakayil, Sunil
description Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.
doi_str_mv 10.1109/ICDCS59278.2024.10561020
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10561020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10561020</ieee_id><sourcerecordid>10561020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3</originalsourceid><addsrcrecordid>eNo1j81KAzEYAKMgWOq-gYeA56zfl_8ca9RaiAitPZckm-hKq9LsxbdXUGFgbgNDCEXoEcFdr_yt3yjHje05cNkjKI3A4YR0zjgrFPwgDZySGddSMrTAz0nX2hsACA7CgJ6Rq_ViyW5iKwMN4ZH61zilj4lu2_j-QsM-HiLjF-Ssxn0r3Z_nZHt_9-wfWHharvwisBGFnFgpHJyQtRrhqixVZy1TTA6s0DEnqyCXQYB0KauKWWrkg7KDrs66hKqKObn87Y6llN3ncTzE49fu_0t8A7gyP0M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RAG-Based LLM Chatbot Using Llama-2</title><source>IEEE Xplore All Conference Series</source><creator>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</creator><creatorcontrib>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</creatorcontrib><description>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</description><identifier>EISSN: 2644-1802</identifier><identifier>EISBN: 9798350350470</identifier><identifier>DOI: 10.1109/ICDCS59278.2024.10561020</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Buildings ; chatbot ; Chatbots ; Circuits and systems ; empathy ; harassment ; Llama-2 ; LLM ; Oral communication ; Productivity ; User experience</subject><ispartof>2024 7th International Conference on Devices, Circuits and Systems (ICDCS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10561020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10561020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vakayil, Sonia</creatorcontrib><creatorcontrib>Juliet, D. Sujitha</creatorcontrib><creatorcontrib>J, Anitha</creatorcontrib><creatorcontrib>Vakayil, Sunil</creatorcontrib><title>RAG-Based LLM Chatbot Using Llama-2</title><title>2024 7th International Conference on Devices, Circuits and Systems (ICDCS)</title><addtitle>ICDCS</addtitle><description>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</description><subject>Accuracy</subject><subject>Buildings</subject><subject>chatbot</subject><subject>Chatbots</subject><subject>Circuits and systems</subject><subject>empathy</subject><subject>harassment</subject><subject>Llama-2</subject><subject>LLM</subject><subject>Oral communication</subject><subject>Productivity</subject><subject>User experience</subject><issn>2644-1802</issn><isbn>9798350350470</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KAzEYAKMgWOq-gYeA56zfl_8ca9RaiAitPZckm-hKq9LsxbdXUGFgbgNDCEXoEcFdr_yt3yjHje05cNkjKI3A4YR0zjgrFPwgDZySGddSMrTAz0nX2hsACA7CgJ6Rq_ViyW5iKwMN4ZH61zilj4lu2_j-QsM-HiLjF-Ssxn0r3Z_nZHt_9-wfWHharvwisBGFnFgpHJyQtRrhqixVZy1TTA6s0DEnqyCXQYB0KauKWWrkg7KDrs66hKqKObn87Y6llN3ncTzE49fu_0t8A7gyP0M</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Vakayil, Sonia</creator><creator>Juliet, D. Sujitha</creator><creator>J, Anitha</creator><creator>Vakayil, Sunil</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240423</creationdate><title>RAG-Based LLM Chatbot Using Llama-2</title><author>Vakayil, Sonia ; Juliet, D. Sujitha ; J, Anitha ; Vakayil, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Buildings</topic><topic>chatbot</topic><topic>Chatbots</topic><topic>Circuits and systems</topic><topic>empathy</topic><topic>harassment</topic><topic>Llama-2</topic><topic>LLM</topic><topic>Oral communication</topic><topic>Productivity</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Vakayil, Sonia</creatorcontrib><creatorcontrib>Juliet, D. Sujitha</creatorcontrib><creatorcontrib>J, Anitha</creatorcontrib><creatorcontrib>Vakayil, Sunil</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vakayil, Sonia</au><au>Juliet, D. Sujitha</au><au>J, Anitha</au><au>Vakayil, Sunil</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RAG-Based LLM Chatbot Using Llama-2</atitle><btitle>2024 7th International Conference on Devices, Circuits and Systems (ICDCS)</btitle><stitle>ICDCS</stitle><date>2024-04-23</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2644-1802</eissn><eisbn>9798350350470</eisbn><abstract>Chatbots, otherwise known as autonomous conversational agents, are a rising utilitarian application of Natural Language Processing. They enable the streamlining of information searches and improve user productivity and experience. This study focuses on building a chatbot that is aimed at assisting victims of sexual harassment, using a Large Language Model (LLM). While ML-based chatbots are a notable prospect, LLM-powered chatbots offer more human-like conversations and can surpass humans in empathy. This project evaluated the performance of the LLM Llama-2 model in generating accurate and empathetic answers to create a supportive, sensitive, and informative chatbot for the victims of sexual harassment. The model leverages Retrieval Augmented generation to achieve a commendable accuracy of above 95%, providing information in an understanding and helpful tone. The model is also capable of providing helpful advice without judgement or preconceived notions about the victim, one of the reasons victims do not report their harassers.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS59278.2024.10561020</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2644-1802
ispartof 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), 2024, p.1-5
issn 2644-1802
language eng
recordid cdi_ieee_primary_10561020
source IEEE Xplore All Conference Series
subjects Accuracy
Buildings
chatbot
Chatbots
Circuits and systems
empathy
harassment
Llama-2
LLM
Oral communication
Productivity
User experience
title RAG-Based LLM Chatbot Using Llama-2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RAG-Based%20LLM%20Chatbot%20Using%20Llama-2&rft.btitle=2024%207th%20International%20Conference%20on%20Devices,%20Circuits%20and%20Systems%20(ICDCS)&rft.au=Vakayil,%20Sonia&rft.date=2024-04-23&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2644-1802&rft_id=info:doi/10.1109/ICDCS59278.2024.10561020&rft.eisbn=9798350350470&rft_dat=%3Cieee_CHZPO%3E10561020%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-ee20934ff739f4ef6c64bab90836acb850ced3049bc5f1c4612d58d6f989b15f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10561020&rfr_iscdi=true