Loading…

Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets

The development of machine learning has resulted in data gaining a pivotal role in the technological advancement, especially data where the ground truth of targeted parameters can be efficiently captured. This requires the development of methods that facilitate accurate data collection with ground t...

Full description

Saved in:
Bibliographic Details
Main Authors: Gatner, Ola, Shallari, Irida, Nie, Yali, O'Nils, Mattias, Imran, Muhammad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Gatner, Ola
Shallari, Irida
Nie, Yali
O'Nils, Mattias
Imran, Muhammad
description The development of machine learning has resulted in data gaining a pivotal role in the technological advancement, especially data where the ground truth of targeted parameters can be efficiently captured. This requires the development of methods that facilitate accurate data collection with ground truth. Under this perspective, Time of Flight sensors pose a high complexity due to the multifaceted nature of noise in the captured data. To enable the use of such sensors in a wide range of applications including Artificial Intelligence, we need to provide also accurate ground truth data. In this article, we present a method for automated data capturing from a LiDAR sensor together with ground truth data generation. This method will facilitate generating big datasets from LiDAR sensors with high accuracy ground truth data. In addition, we provide a dataset that aside from depth sensor data contains also RGB, confidence and infrared data captured from the LiDAR sensor. As a result, the proposed method not only facilitates data capturing but it enables to generate accurate ground truth data, with RMSE of only 0.04 m at 1.3 m distance.
doi_str_mv 10.1109/I2MTC60896.2024.10561218
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10561218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10561218</ieee_id><sourcerecordid>10561218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-8aca90c87251b126a79aeebfdb5e8160147fbfcaaa9d3a4bf65d10a06b1e7813</originalsourceid><addsrcrecordid>eNpNkM1Kw0AURkdBsNS-gYt5gdQ7M8n8LGuqtZAi1OzLTXOnHalJmUwQ315FBVeHb3G-xWGMC5gLAe5uLTd1qcE6PZcg87mAQgsp7AWbOeOsKkBZcKAu2UTqXGYSjLlms2F4BQAlIZcqnzDaUDr2Lfd95CWe0xhDd-AbwmGM1PIqLBdbvsSE_D2kI1_FfuxaXsfxa3w7K-ooYgp9x3vP78OBbwlP_70XSsMNu_J4Gmj2yymrHx_q8imrnlfrclFlQRiZMot7dLC3RhaiEVKjcUjU-LYpyAoNIje-8XtEdK3CvPG6aAUg6EaQsUJN2e3PbSCi3TmGN4wfu78w6hOGr1ec</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets</title><source>IEEE Xplore All Conference Series</source><creator>Gatner, Ola ; Shallari, Irida ; Nie, Yali ; O'Nils, Mattias ; Imran, Muhammad</creator><creatorcontrib>Gatner, Ola ; Shallari, Irida ; Nie, Yali ; O'Nils, Mattias ; Imran, Muhammad</creatorcontrib><description>The development of machine learning has resulted in data gaining a pivotal role in the technological advancement, especially data where the ground truth of targeted parameters can be efficiently captured. This requires the development of methods that facilitate accurate data collection with ground truth. Under this perspective, Time of Flight sensors pose a high complexity due to the multifaceted nature of noise in the captured data. To enable the use of such sensors in a wide range of applications including Artificial Intelligence, we need to provide also accurate ground truth data. In this article, we present a method for automated data capturing from a LiDAR sensor together with ground truth data generation. This method will facilitate generating big datasets from LiDAR sensors with high accuracy ground truth data. In addition, we provide a dataset that aside from depth sensor data contains also RGB, confidence and infrared data captured from the LiDAR sensor. As a result, the proposed method not only facilitates data capturing but it enables to generate accurate ground truth data, with RMSE of only 0.04 m at 1.3 m distance.</description><identifier>EISSN: 2642-2077</identifier><identifier>EISBN: 9798350380903</identifier><identifier>DOI: 10.1109/I2MTC60896.2024.10561218</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; confidence data ; Data collection ; denoising ; ground truth ; Laser radar ; LiDAR ; Machine learning ; Magnetic heads ; Noise ; point cloud ; Three-dimensional displays ; Time of Flight</subject><ispartof>2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10561218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10561218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gatner, Ola</creatorcontrib><creatorcontrib>Shallari, Irida</creatorcontrib><creatorcontrib>Nie, Yali</creatorcontrib><creatorcontrib>O'Nils, Mattias</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><title>Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets</title><title>2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)</title><addtitle>I2MTC</addtitle><description>The development of machine learning has resulted in data gaining a pivotal role in the technological advancement, especially data where the ground truth of targeted parameters can be efficiently captured. This requires the development of methods that facilitate accurate data collection with ground truth. Under this perspective, Time of Flight sensors pose a high complexity due to the multifaceted nature of noise in the captured data. To enable the use of such sensors in a wide range of applications including Artificial Intelligence, we need to provide also accurate ground truth data. In this article, we present a method for automated data capturing from a LiDAR sensor together with ground truth data generation. This method will facilitate generating big datasets from LiDAR sensors with high accuracy ground truth data. In addition, we provide a dataset that aside from depth sensor data contains also RGB, confidence and infrared data captured from the LiDAR sensor. As a result, the proposed method not only facilitates data capturing but it enables to generate accurate ground truth data, with RMSE of only 0.04 m at 1.3 m distance.</description><subject>Accuracy</subject><subject>confidence data</subject><subject>Data collection</subject><subject>denoising</subject><subject>ground truth</subject><subject>Laser radar</subject><subject>LiDAR</subject><subject>Machine learning</subject><subject>Magnetic heads</subject><subject>Noise</subject><subject>point cloud</subject><subject>Three-dimensional displays</subject><subject>Time of Flight</subject><issn>2642-2077</issn><isbn>9798350380903</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkM1Kw0AURkdBsNS-gYt5gdQ7M8n8LGuqtZAi1OzLTXOnHalJmUwQ315FBVeHb3G-xWGMC5gLAe5uLTd1qcE6PZcg87mAQgsp7AWbOeOsKkBZcKAu2UTqXGYSjLlms2F4BQAlIZcqnzDaUDr2Lfd95CWe0xhDd-AbwmGM1PIqLBdbvsSE_D2kI1_FfuxaXsfxa3w7K-ooYgp9x3vP78OBbwlP_70XSsMNu_J4Gmj2yymrHx_q8imrnlfrclFlQRiZMot7dLC3RhaiEVKjcUjU-LYpyAoNIje-8XtEdK3CvPG6aAUg6EaQsUJN2e3PbSCi3TmGN4wfu78w6hOGr1ec</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Gatner, Ola</creator><creator>Shallari, Irida</creator><creator>Nie, Yali</creator><creator>O'Nils, Mattias</creator><creator>Imran, Muhammad</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240520</creationdate><title>Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets</title><author>Gatner, Ola ; Shallari, Irida ; Nie, Yali ; O'Nils, Mattias ; Imran, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-8aca90c87251b126a79aeebfdb5e8160147fbfcaaa9d3a4bf65d10a06b1e7813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>confidence data</topic><topic>Data collection</topic><topic>denoising</topic><topic>ground truth</topic><topic>Laser radar</topic><topic>LiDAR</topic><topic>Machine learning</topic><topic>Magnetic heads</topic><topic>Noise</topic><topic>point cloud</topic><topic>Three-dimensional displays</topic><topic>Time of Flight</topic><toplevel>online_resources</toplevel><creatorcontrib>Gatner, Ola</creatorcontrib><creatorcontrib>Shallari, Irida</creatorcontrib><creatorcontrib>Nie, Yali</creatorcontrib><creatorcontrib>O'Nils, Mattias</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gatner, Ola</au><au>Shallari, Irida</au><au>Nie, Yali</au><au>O'Nils, Mattias</au><au>Imran, Muhammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets</atitle><btitle>2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)</btitle><stitle>I2MTC</stitle><date>2024-05-20</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2642-2077</eissn><eisbn>9798350380903</eisbn><abstract>The development of machine learning has resulted in data gaining a pivotal role in the technological advancement, especially data where the ground truth of targeted parameters can be efficiently captured. This requires the development of methods that facilitate accurate data collection with ground truth. Under this perspective, Time of Flight sensors pose a high complexity due to the multifaceted nature of noise in the captured data. To enable the use of such sensors in a wide range of applications including Artificial Intelligence, we need to provide also accurate ground truth data. In this article, we present a method for automated data capturing from a LiDAR sensor together with ground truth data generation. This method will facilitate generating big datasets from LiDAR sensors with high accuracy ground truth data. In addition, we provide a dataset that aside from depth sensor data contains also RGB, confidence and infrared data captured from the LiDAR sensor. As a result, the proposed method not only facilitates data capturing but it enables to generate accurate ground truth data, with RMSE of only 0.04 m at 1.3 m distance.</abstract><pub>IEEE</pub><doi>10.1109/I2MTC60896.2024.10561218</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-2077
ispartof 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2024, p.1-6
issn 2642-2077
language eng
recordid cdi_ieee_primary_10561218
source IEEE Xplore All Conference Series
subjects Accuracy
confidence data
Data collection
denoising
ground truth
Laser radar
LiDAR
Machine learning
Magnetic heads
Noise
point cloud
Three-dimensional displays
Time of Flight
title Method for Capturing Measured LiDAR Data with Ground Truth for Generation of Big Real LiDAR Data Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Method%20for%20Capturing%20Measured%20LiDAR%20Data%20with%20Ground%20Truth%20for%20Generation%20of%20Big%20Real%20LiDAR%20Data%20Sets&rft.btitle=2024%20IEEE%20International%20Instrumentation%20and%20Measurement%20Technology%20Conference%20(I2MTC)&rft.au=Gatner,%20Ola&rft.date=2024-05-20&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2642-2077&rft_id=info:doi/10.1109/I2MTC60896.2024.10561218&rft.eisbn=9798350380903&rft_dat=%3Cieee_CHZPO%3E10561218%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-8aca90c87251b126a79aeebfdb5e8160147fbfcaaa9d3a4bf65d10a06b1e7813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10561218&rfr_iscdi=true