Loading…

False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion

Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.89262-89274
Main Authors: Ji, Jinpeng, Liu, Yang, Chen, Jian, Yao, Zhiwei, Zhang, Mengdi, Gong, Yanyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73
container_end_page 89274
container_issue
container_start_page 89262
container_title IEEE access
container_volume 12
creator Ji, Jinpeng
Liu, Yang
Chen, Jian
Yao, Zhiwei
Zhang, Mengdi
Gong, Yanyong
description Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.
doi_str_mv 10.1109/ACCESS.2024.3418883
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10570442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10570442</ieee_id><doaj_id>oai_doaj_org_article_16f5d25b47e749ca86199127005415a6</doaj_id><sourcerecordid>3075415485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYoNaNHlC9qDgJ2dipZkSccsaboACXbIih4FWqZbZ5mdyfKhfz9lDobyQvLhvUcJL8vugM8BuH1YLJeP-_284IWcCwnGGHGV3RRQ2lwoUX76MF9ns2E48FQmQUrfZH6Nx4HYCiOyTXcgH9u-Y4sY0f9iK4oXYEfxra_ZNxyoZmlfEZ3YljB0bffKXtr4xnbjMbb53uOR2JowjiH1cUjqL9nn5nxldum32fP68efye7798bRZLra5L4yNeQOVoQpAewRRGIPcGFlrVFqLRpXSgC-tBI-SS6D0daqMrQG11U0SanGbbSbfuseDO4X2N4Z312Pr_gF9eHUYYuuP5KBsVF2oSmrS0no0JVgLheZcSVBYJq-vk9cp9H9GGqI79GPo0vOd4PpMkkYllphYPvTDEKj5fxW4O4fjpnDcORx3CSep7idVS0QfFEpzKQvxF83AiD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075415485</pqid></control><display><type>article</type><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><source>IEEE Open Access Journals</source><creator>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</creator><creatorcontrib>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</creatorcontrib><description>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3418883</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; convolution neural network ; Convolutional neural networks ; Cyberattack ; Data models ; Deep learning ; Distributed generation ; Divergence ; dynamic state estimation ; Energy management ; False data injection attack ; Feature extraction ; feature fusion ; Logic gates ; multi-scale convolution ; Neural networks ; Smart grid ; State vectors ; Topology ; Training ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.89262-89274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</cites><orcidid>0009-0001-8419-8119 ; 0009-0006-2835-9025 ; 0000-0002-6166-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10570442$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ji, Jinpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yao, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Mengdi</creatorcontrib><creatorcontrib>Gong, Yanyong</creatorcontrib><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</description><subject>Artificial neural networks</subject><subject>convolution neural network</subject><subject>Convolutional neural networks</subject><subject>Cyberattack</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Distributed generation</subject><subject>Divergence</subject><subject>dynamic state estimation</subject><subject>Energy management</subject><subject>False data injection attack</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Logic gates</subject><subject>multi-scale convolution</subject><subject>Neural networks</subject><subject>Smart grid</subject><subject>State vectors</subject><subject>Topology</subject><subject>Training</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYoNaNHlC9qDgJ2dipZkSccsaboACXbIih4FWqZbZ5mdyfKhfz9lDobyQvLhvUcJL8vugM8BuH1YLJeP-_284IWcCwnGGHGV3RRQ2lwoUX76MF9ns2E48FQmQUrfZH6Nx4HYCiOyTXcgH9u-Y4sY0f9iK4oXYEfxra_ZNxyoZmlfEZ3YljB0bffKXtr4xnbjMbb53uOR2JowjiH1cUjqL9nn5nxldum32fP68efye7798bRZLra5L4yNeQOVoQpAewRRGIPcGFlrVFqLRpXSgC-tBI-SS6D0daqMrQG11U0SanGbbSbfuseDO4X2N4Z312Pr_gF9eHUYYuuP5KBsVF2oSmrS0no0JVgLheZcSVBYJq-vk9cp9H9GGqI79GPo0vOd4PpMkkYllphYPvTDEKj5fxW4O4fjpnDcORx3CSep7idVS0QfFEpzKQvxF83AiD0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ji, Jinpeng</creator><creator>Liu, Yang</creator><creator>Chen, Jian</creator><creator>Yao, Zhiwei</creator><creator>Zhang, Mengdi</creator><creator>Gong, Yanyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-8419-8119</orcidid><orcidid>https://orcid.org/0009-0006-2835-9025</orcidid><orcidid>https://orcid.org/0000-0002-6166-7015</orcidid></search><sort><creationdate>2024</creationdate><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><author>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>convolution neural network</topic><topic>Convolutional neural networks</topic><topic>Cyberattack</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Distributed generation</topic><topic>Divergence</topic><topic>dynamic state estimation</topic><topic>Energy management</topic><topic>False data injection attack</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Logic gates</topic><topic>multi-scale convolution</topic><topic>Neural networks</topic><topic>Smart grid</topic><topic>State vectors</topic><topic>Topology</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Jinpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yao, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Mengdi</creatorcontrib><creatorcontrib>Gong, Yanyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Jinpeng</au><au>Liu, Yang</au><au>Chen, Jian</au><au>Yao, Zhiwei</au><au>Zhang, Mengdi</au><au>Gong, Yanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>89262</spage><epage>89274</epage><pages>89262-89274</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3418883</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-8419-8119</orcidid><orcidid>https://orcid.org/0009-0006-2835-9025</orcidid><orcidid>https://orcid.org/0000-0002-6166-7015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.89262-89274
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10570442
source IEEE Open Access Journals
subjects Artificial neural networks
convolution neural network
Convolutional neural networks
Cyberattack
Data models
Deep learning
Distributed generation
Divergence
dynamic state estimation
Energy management
False data injection attack
Feature extraction
feature fusion
Logic gates
multi-scale convolution
Neural networks
Smart grid
State vectors
Topology
Training
Vectors
title False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=False%20Data%20Injection%20Attack%20Detection%20Method%20Based%20on%20Deep%20Learning%20With%20Multi-Scale%20Feature%20Fusion&rft.jtitle=IEEE%20access&rft.au=Ji,%20Jinpeng&rft.date=2024&rft.volume=12&rft.spage=89262&rft.epage=89274&rft.pages=89262-89274&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3418883&rft_dat=%3Cproquest_ieee_%3E3075415485%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075415485&rft_id=info:pmid/&rft_ieee_id=10570442&rfr_iscdi=true