Loading…
False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion
Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the i...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.89262-89274 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73 |
container_end_page | 89274 |
container_issue | |
container_start_page | 89262 |
container_title | IEEE access |
container_volume | 12 |
creator | Ji, Jinpeng Liu, Yang Chen, Jian Yao, Zhiwei Zhang, Mengdi Gong, Yanyong |
description | Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching. |
doi_str_mv | 10.1109/ACCESS.2024.3418883 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10570442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10570442</ieee_id><doaj_id>oai_doaj_org_article_16f5d25b47e749ca86199127005415a6</doaj_id><sourcerecordid>3075415485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYoNaNHlC9qDgJ2dipZkSccsaboACXbIih4FWqZbZ5mdyfKhfz9lDobyQvLhvUcJL8vugM8BuH1YLJeP-_284IWcCwnGGHGV3RRQ2lwoUX76MF9ns2E48FQmQUrfZH6Nx4HYCiOyTXcgH9u-Y4sY0f9iK4oXYEfxra_ZNxyoZmlfEZ3YljB0bffKXtr4xnbjMbb53uOR2JowjiH1cUjqL9nn5nxldum32fP68efye7798bRZLra5L4yNeQOVoQpAewRRGIPcGFlrVFqLRpXSgC-tBI-SS6D0daqMrQG11U0SanGbbSbfuseDO4X2N4Z312Pr_gF9eHUYYuuP5KBsVF2oSmrS0no0JVgLheZcSVBYJq-vk9cp9H9GGqI79GPo0vOd4PpMkkYllphYPvTDEKj5fxW4O4fjpnDcORx3CSep7idVS0QfFEpzKQvxF83AiD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075415485</pqid></control><display><type>article</type><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><source>IEEE Open Access Journals</source><creator>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</creator><creatorcontrib>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</creatorcontrib><description>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3418883</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; convolution neural network ; Convolutional neural networks ; Cyberattack ; Data models ; Deep learning ; Distributed generation ; Divergence ; dynamic state estimation ; Energy management ; False data injection attack ; Feature extraction ; feature fusion ; Logic gates ; multi-scale convolution ; Neural networks ; Smart grid ; State vectors ; Topology ; Training ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.89262-89274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</cites><orcidid>0009-0001-8419-8119 ; 0009-0006-2835-9025 ; 0000-0002-6166-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10570442$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ji, Jinpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yao, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Mengdi</creatorcontrib><creatorcontrib>Gong, Yanyong</creatorcontrib><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</description><subject>Artificial neural networks</subject><subject>convolution neural network</subject><subject>Convolutional neural networks</subject><subject>Cyberattack</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Distributed generation</subject><subject>Divergence</subject><subject>dynamic state estimation</subject><subject>Energy management</subject><subject>False data injection attack</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Logic gates</subject><subject>multi-scale convolution</subject><subject>Neural networks</subject><subject>Smart grid</subject><subject>State vectors</subject><subject>Topology</subject><subject>Training</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYoNaNHlC9qDgJ2dipZkSccsaboACXbIih4FWqZbZ5mdyfKhfz9lDobyQvLhvUcJL8vugM8BuH1YLJeP-_284IWcCwnGGHGV3RRQ2lwoUX76MF9ns2E48FQmQUrfZH6Nx4HYCiOyTXcgH9u-Y4sY0f9iK4oXYEfxra_ZNxyoZmlfEZ3YljB0bffKXtr4xnbjMbb53uOR2JowjiH1cUjqL9nn5nxldum32fP68efye7798bRZLra5L4yNeQOVoQpAewRRGIPcGFlrVFqLRpXSgC-tBI-SS6D0daqMrQG11U0SanGbbSbfuseDO4X2N4Z312Pr_gF9eHUYYuuP5KBsVF2oSmrS0no0JVgLheZcSVBYJq-vk9cp9H9GGqI79GPo0vOd4PpMkkYllphYPvTDEKj5fxW4O4fjpnDcORx3CSep7idVS0QfFEpzKQvxF83AiD0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ji, Jinpeng</creator><creator>Liu, Yang</creator><creator>Chen, Jian</creator><creator>Yao, Zhiwei</creator><creator>Zhang, Mengdi</creator><creator>Gong, Yanyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-8419-8119</orcidid><orcidid>https://orcid.org/0009-0006-2835-9025</orcidid><orcidid>https://orcid.org/0000-0002-6166-7015</orcidid></search><sort><creationdate>2024</creationdate><title>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</title><author>Ji, Jinpeng ; Liu, Yang ; Chen, Jian ; Yao, Zhiwei ; Zhang, Mengdi ; Gong, Yanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>convolution neural network</topic><topic>Convolutional neural networks</topic><topic>Cyberattack</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Distributed generation</topic><topic>Divergence</topic><topic>dynamic state estimation</topic><topic>Energy management</topic><topic>False data injection attack</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Logic gates</topic><topic>multi-scale convolution</topic><topic>Neural networks</topic><topic>Smart grid</topic><topic>State vectors</topic><topic>Topology</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Jinpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yao, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Mengdi</creatorcontrib><creatorcontrib>Gong, Yanyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Jinpeng</au><au>Liu, Yang</au><au>Chen, Jian</au><au>Yao, Zhiwei</au><au>Zhang, Mengdi</au><au>Gong, Yanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>89262</spage><epage>89274</epage><pages>89262-89274</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cyber-attacks, especially the false data injection attack (FDIA), are gradually becoming a common way to threaten the regular operation of power grid. However, the FDIA is challenging to detect because it prevents the bad data detection mechanism in the energy management system from destroying the integrity of measurement information. Aiming at the problem of the FDIA detection in smart grids, this paper presents a FDIA detection method based on deep learning with multi-scale feature fusion. First, the improved convolution neural network (ICNN) is used to predict measurement data by combining convolution neural network with the Inception v1 module. Then, the attention mechanism is introduced into the ICNN to extract and fuse full and partial features of measurement data. By fitting the function between measurement and state vectors, the state data are generated with predicted measurement data. Eventually, the threshold of divergence is obtained to determine whether the FDIA occurs or not by the difference in probability distribution between predicted and actual state vectors. The performance of the proposed method is evaluated in the IEEE 14-node and 39-node test systems. The results show that the proposed method can accurately detect the existence of FDIA in time. This method has definite robustness to noise and distributed generation switching.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3418883</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-8419-8119</orcidid><orcidid>https://orcid.org/0009-0006-2835-9025</orcidid><orcidid>https://orcid.org/0000-0002-6166-7015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.89262-89274 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10570442 |
source | IEEE Open Access Journals |
subjects | Artificial neural networks convolution neural network Convolutional neural networks Cyberattack Data models Deep learning Distributed generation Divergence dynamic state estimation Energy management False data injection attack Feature extraction feature fusion Logic gates multi-scale convolution Neural networks Smart grid State vectors Topology Training Vectors |
title | False Data Injection Attack Detection Method Based on Deep Learning With Multi-Scale Feature Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=False%20Data%20Injection%20Attack%20Detection%20Method%20Based%20on%20Deep%20Learning%20With%20Multi-Scale%20Feature%20Fusion&rft.jtitle=IEEE%20access&rft.au=Ji,%20Jinpeng&rft.date=2024&rft.volume=12&rft.spage=89262&rft.epage=89274&rft.pages=89262-89274&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3418883&rft_dat=%3Cproquest_ieee_%3E3075415485%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-f1b8eb117ca13288a0884d7a5773f56481c6941ca4041e110eb89d1a797f8eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075415485&rft_id=info:pmid/&rft_ieee_id=10570442&rfr_iscdi=true |