Loading…

Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network

Next-generation Virtual Reality (VR) technology enables full-user immersion and support for multiuser Virtual Experiences (VEs). Given the low-cost and passive nature of intelligent reflecting surfaces (IRSs), this paper investigates the optimal design of a multi-user IRS-assisted VR network, where...

Full description

Saved in:
Bibliographic Details
Main Authors: Jalali, Jalal, Madrid, Maria Bustamante, Lemic, Filip, Tabassum, Hina, Struye, Jakob, Famaey, Jeroen, Perez, Xavier Costa
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Jalali, Jalal
Madrid, Maria Bustamante
Lemic, Filip
Tabassum, Hina
Struye, Jakob
Famaey, Jeroen
Perez, Xavier Costa
description Next-generation Virtual Reality (VR) technology enables full-user immersion and support for multiuser Virtual Experiences (VEs). Given the low-cost and passive nature of intelligent reflecting surfaces (IRSs), this paper investigates the optimal design of a multi-user IRS-assisted VR network, where an IRS is optimally deployed in a confined space as a function of VR fully-immersed users' trajectory. In particular, we consider sum-rate maximization of all VR users and optimize the Access Point's (AP) active beamforming, and the IRS's placement, phase shifts, and radiation patterns in a confined indoor environment operating in millimeter Wave (mmWave) frequencies. We introduce the Alternating Optimization (AO) algorithm, decompose the problem into distinct sub-problems, and solve each problem optimally. That is, maximum-ratio transmission (MRT) is applied for optimal beamforming at the AP, optimal closed-from IRS phase shifts are determined using quadratic transformation, global optimization is conducted to determine the ideal locations for the IRS elements, and the monotonic optimal radiation pattern has been analyzed. Our findings highlight that strategically allocating the IRS's resources at optimal physical locations enhances signal stability and maximizes per-user throughput.
doi_str_mv 10.1109/WCNC57260.2024.10570884
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10570884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10570884</ieee_id><sourcerecordid>10570884</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-44475c6b428e3cb84248468a5700efde272590fc8f57c79211579770c883eefa3</originalsourceid><addsrcrecordid>eNo1kNtKw0AURUdBsNb-geD8QOKZW2byWIKXQGwhWvskZTo5gdEkU5JU0a-3UPu02bBYsDchtwxixiC9W2eLTGmeQMyBy5iB0mCMPCOzVKdGKBAglOHnZMKUMhFPGL8kV8PwAcBBSTkh70VwdvSho8vd6Fv_eyy2q2iJQ9j3Dum8aU5QqGlevlB_IOjzvhl9tBqwp3lXhdDTtl3bL6RvJV3g-B36z2tyUdtmwNl_Tsnq4f41e4qK5WOezYvIMyHHSEqplUu2khsUbmskl0Ymxh7WANYVcs1VCrUztdJOp5wxpVOtwRkjEGsrpuTm6PWIuNn1vrX9z-Z0h_gDMnNTxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network</title><source>IEEE Xplore All Conference Series</source><creator>Jalali, Jalal ; Madrid, Maria Bustamante ; Lemic, Filip ; Tabassum, Hina ; Struye, Jakob ; Famaey, Jeroen ; Perez, Xavier Costa</creator><creatorcontrib>Jalali, Jalal ; Madrid, Maria Bustamante ; Lemic, Filip ; Tabassum, Hina ; Struye, Jakob ; Famaey, Jeroen ; Perez, Xavier Costa</creatorcontrib><description>Next-generation Virtual Reality (VR) technology enables full-user immersion and support for multiuser Virtual Experiences (VEs). Given the low-cost and passive nature of intelligent reflecting surfaces (IRSs), this paper investigates the optimal design of a multi-user IRS-assisted VR network, where an IRS is optimally deployed in a confined space as a function of VR fully-immersed users' trajectory. In particular, we consider sum-rate maximization of all VR users and optimize the Access Point's (AP) active beamforming, and the IRS's placement, phase shifts, and radiation patterns in a confined indoor environment operating in millimeter Wave (mmWave) frequencies. We introduce the Alternating Optimization (AO) algorithm, decompose the problem into distinct sub-problems, and solve each problem optimally. That is, maximum-ratio transmission (MRT) is applied for optimal beamforming at the AP, optimal closed-from IRS phase shifts are determined using quadratic transformation, global optimization is conducted to determine the ideal locations for the IRS elements, and the monotonic optimal radiation pattern has been analyzed. Our findings highlight that strategically allocating the IRS's resources at optimal physical locations enhances signal stability and maximizes per-user throughput.</description><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 9798350303582</identifier><identifier>DOI: 10.1109/WCNC57260.2024.10570884</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alternative Optimization (AO) ; Array signal processing ; Intelligent Reflecting Surface (IRS) ; Millimeter Wave (mmWave) ; Resource Allocation ; Resource management ; Surface waves ; Throughput ; Trajectory ; Virtual reality ; Virtual Reality (VR) ; Wireless communication</subject><ispartof>2024 IEEE Wireless Communications and Networking Conference (WCNC), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10570884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10570884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jalali, Jalal</creatorcontrib><creatorcontrib>Madrid, Maria Bustamante</creatorcontrib><creatorcontrib>Lemic, Filip</creatorcontrib><creatorcontrib>Tabassum, Hina</creatorcontrib><creatorcontrib>Struye, Jakob</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Perez, Xavier Costa</creatorcontrib><title>Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network</title><title>2024 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>Next-generation Virtual Reality (VR) technology enables full-user immersion and support for multiuser Virtual Experiences (VEs). Given the low-cost and passive nature of intelligent reflecting surfaces (IRSs), this paper investigates the optimal design of a multi-user IRS-assisted VR network, where an IRS is optimally deployed in a confined space as a function of VR fully-immersed users' trajectory. In particular, we consider sum-rate maximization of all VR users and optimize the Access Point's (AP) active beamforming, and the IRS's placement, phase shifts, and radiation patterns in a confined indoor environment operating in millimeter Wave (mmWave) frequencies. We introduce the Alternating Optimization (AO) algorithm, decompose the problem into distinct sub-problems, and solve each problem optimally. That is, maximum-ratio transmission (MRT) is applied for optimal beamforming at the AP, optimal closed-from IRS phase shifts are determined using quadratic transformation, global optimization is conducted to determine the ideal locations for the IRS elements, and the monotonic optimal radiation pattern has been analyzed. Our findings highlight that strategically allocating the IRS's resources at optimal physical locations enhances signal stability and maximizes per-user throughput.</description><subject>Alternative Optimization (AO)</subject><subject>Array signal processing</subject><subject>Intelligent Reflecting Surface (IRS)</subject><subject>Millimeter Wave (mmWave)</subject><subject>Resource Allocation</subject><subject>Resource management</subject><subject>Surface waves</subject><subject>Throughput</subject><subject>Trajectory</subject><subject>Virtual reality</subject><subject>Virtual Reality (VR)</subject><subject>Wireless communication</subject><issn>1558-2612</issn><isbn>9798350303582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AURUdBsNb-geD8QOKZW2byWIKXQGwhWvskZTo5gdEkU5JU0a-3UPu02bBYsDchtwxixiC9W2eLTGmeQMyBy5iB0mCMPCOzVKdGKBAglOHnZMKUMhFPGL8kV8PwAcBBSTkh70VwdvSho8vd6Fv_eyy2q2iJQ9j3Dum8aU5QqGlevlB_IOjzvhl9tBqwp3lXhdDTtl3bL6RvJV3g-B36z2tyUdtmwNl_Tsnq4f41e4qK5WOezYvIMyHHSEqplUu2khsUbmskl0Ymxh7WANYVcs1VCrUztdJOp5wxpVOtwRkjEGsrpuTm6PWIuNn1vrX9z-Z0h_gDMnNTxA</recordid><startdate>20240421</startdate><enddate>20240421</enddate><creator>Jalali, Jalal</creator><creator>Madrid, Maria Bustamante</creator><creator>Lemic, Filip</creator><creator>Tabassum, Hina</creator><creator>Struye, Jakob</creator><creator>Famaey, Jeroen</creator><creator>Perez, Xavier Costa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240421</creationdate><title>Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network</title><author>Jalali, Jalal ; Madrid, Maria Bustamante ; Lemic, Filip ; Tabassum, Hina ; Struye, Jakob ; Famaey, Jeroen ; Perez, Xavier Costa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-44475c6b428e3cb84248468a5700efde272590fc8f57c79211579770c883eefa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative Optimization (AO)</topic><topic>Array signal processing</topic><topic>Intelligent Reflecting Surface (IRS)</topic><topic>Millimeter Wave (mmWave)</topic><topic>Resource Allocation</topic><topic>Resource management</topic><topic>Surface waves</topic><topic>Throughput</topic><topic>Trajectory</topic><topic>Virtual reality</topic><topic>Virtual Reality (VR)</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Jalali, Jalal</creatorcontrib><creatorcontrib>Madrid, Maria Bustamante</creatorcontrib><creatorcontrib>Lemic, Filip</creatorcontrib><creatorcontrib>Tabassum, Hina</creatorcontrib><creatorcontrib>Struye, Jakob</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Perez, Xavier Costa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jalali, Jalal</au><au>Madrid, Maria Bustamante</au><au>Lemic, Filip</au><au>Tabassum, Hina</au><au>Struye, Jakob</au><au>Famaey, Jeroen</au><au>Perez, Xavier Costa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network</atitle><btitle>2024 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2024-04-21</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1558-2612</eissn><eisbn>9798350303582</eisbn><abstract>Next-generation Virtual Reality (VR) technology enables full-user immersion and support for multiuser Virtual Experiences (VEs). Given the low-cost and passive nature of intelligent reflecting surfaces (IRSs), this paper investigates the optimal design of a multi-user IRS-assisted VR network, where an IRS is optimally deployed in a confined space as a function of VR fully-immersed users' trajectory. In particular, we consider sum-rate maximization of all VR users and optimize the Access Point's (AP) active beamforming, and the IRS's placement, phase shifts, and radiation patterns in a confined indoor environment operating in millimeter Wave (mmWave) frequencies. We introduce the Alternating Optimization (AO) algorithm, decompose the problem into distinct sub-problems, and solve each problem optimally. That is, maximum-ratio transmission (MRT) is applied for optimal beamforming at the AP, optimal closed-from IRS phase shifts are determined using quadratic transformation, global optimization is conducted to determine the ideal locations for the IRS elements, and the monotonic optimal radiation pattern has been analyzed. Our findings highlight that strategically allocating the IRS's resources at optimal physical locations enhances signal stability and maximizes per-user throughput.</abstract><pub>IEEE</pub><doi>10.1109/WCNC57260.2024.10570884</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-2612
ispartof 2024 IEEE Wireless Communications and Networking Conference (WCNC), 2024, p.1-6
issn 1558-2612
language eng
recordid cdi_ieee_primary_10570884
source IEEE Xplore All Conference Series
subjects Alternative Optimization (AO)
Array signal processing
Intelligent Reflecting Surface (IRS)
Millimeter Wave (mmWave)
Resource Allocation
Resource management
Surface waves
Throughput
Trajectory
Virtual reality
Virtual Reality (VR)
Wireless communication
title Location Optimization and Resource Allocation of IRS in a Multi-User Indoor mmWave VR Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Location%20Optimization%20and%20Resource%20Allocation%20of%20IRS%20in%20a%20Multi-User%20Indoor%20mmWave%20VR%20Network&rft.btitle=2024%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Jalali,%20Jalal&rft.date=2024-04-21&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1558-2612&rft_id=info:doi/10.1109/WCNC57260.2024.10570884&rft.eisbn=9798350303582&rft_dat=%3Cieee_CHZPO%3E10570884%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-44475c6b428e3cb84248468a5700efde272590fc8f57c79211579770c883eefa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10570884&rfr_iscdi=true