Loading…
Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques
To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zanbouaa, Asmae Zrira, Nabila Slimani, Saad Allak, Anass Benmiloud, Ibtissam Bouyakhf, El Houssine |
description | To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco. |
doi_str_mv | 10.1109/ISIVC61350.2024.10577871 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10577871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10577871</ieee_id><sourcerecordid>10577871</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453</originalsourceid><addsrcrecordid>eNo1kMtKw0AARUdBsNT8gYv5gdR5P5YhtBoouDC4LZPJTDOSTGImWfTvrWhXFy6cy-ECADHaYYz0S_VRfZYCU452BBG2w4hLqSS-A5mWWl17qjgR8h5siKIkV5TKR5Cl9IUQolhpxvUG1PvYmWhDPMODW0wPy96kFHywZgljhIW162zsBS7dPK7nDpbjMK2Lm_MitK6F1TCZEJdfvna2i-F7dekJPHjTJ5f95xbUh31dvuXH99eqLI55YJrmUjeecOWxo0I0wnPimRFSI6bkVdEq5hgzzFBpPEFYeW6Rsr6RumVSMU634PlvNjjnTtMcBjNfTrcf6A9zNlKO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><source>IEEE Xplore All Conference Series</source><creator>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</creator><creatorcontrib>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</creatorcontrib><description>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</description><identifier>EISSN: 2832-8337</identifier><identifier>EISBN: 9798350385267</identifier><identifier>DOI: 10.1109/ISIVC61350.2024.10577871</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Buildings ; Classification ; Data models ; Deep learning ; Fetal ; Hospitals ; Inpainting ; Medical diagnostic imaging ; Ultrasonic imaging ; Ultrasound</subject><ispartof>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10577871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10577871$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanbouaa, Asmae</creatorcontrib><creatorcontrib>Zrira, Nabila</creatorcontrib><creatorcontrib>Slimani, Saad</creatorcontrib><creatorcontrib>Allak, Anass</creatorcontrib><creatorcontrib>Benmiloud, Ibtissam</creatorcontrib><creatorcontrib>Bouyakhf, El Houssine</creatorcontrib><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><title>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC)</title><addtitle>ISIVC</addtitle><description>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Buildings</subject><subject>Classification</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Fetal</subject><subject>Hospitals</subject><subject>Inpainting</subject><subject>Medical diagnostic imaging</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2832-8337</issn><isbn>9798350385267</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw0AARUdBsNT8gYv5gdR5P5YhtBoouDC4LZPJTDOSTGImWfTvrWhXFy6cy-ECADHaYYz0S_VRfZYCU452BBG2w4hLqSS-A5mWWl17qjgR8h5siKIkV5TKR5Cl9IUQolhpxvUG1PvYmWhDPMODW0wPy96kFHywZgljhIW162zsBS7dPK7nDpbjMK2Lm_MitK6F1TCZEJdfvna2i-F7dekJPHjTJ5f95xbUh31dvuXH99eqLI55YJrmUjeecOWxo0I0wnPimRFSI6bkVdEq5hgzzFBpPEFYeW6Rsr6RumVSMU634PlvNjjnTtMcBjNfTrcf6A9zNlKO</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Zanbouaa, Asmae</creator><creator>Zrira, Nabila</creator><creator>Slimani, Saad</creator><creator>Allak, Anass</creator><creator>Benmiloud, Ibtissam</creator><creator>Bouyakhf, El Houssine</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240521</creationdate><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><author>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Buildings</topic><topic>Classification</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Fetal</topic><topic>Hospitals</topic><topic>Inpainting</topic><topic>Medical diagnostic imaging</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>online_resources</toplevel><creatorcontrib>Zanbouaa, Asmae</creatorcontrib><creatorcontrib>Zrira, Nabila</creatorcontrib><creatorcontrib>Slimani, Saad</creatorcontrib><creatorcontrib>Allak, Anass</creatorcontrib><creatorcontrib>Benmiloud, Ibtissam</creatorcontrib><creatorcontrib>Bouyakhf, El Houssine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanbouaa, Asmae</au><au>Zrira, Nabila</au><au>Slimani, Saad</au><au>Allak, Anass</au><au>Benmiloud, Ibtissam</au><au>Bouyakhf, El Houssine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</atitle><btitle>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC)</btitle><stitle>ISIVC</stitle><date>2024-05-21</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2832-8337</eissn><eisbn>9798350385267</eisbn><abstract>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</abstract><pub>IEEE</pub><doi>10.1109/ISIVC61350.2024.10577871</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2832-8337 |
ispartof | 2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), 2024, p.1-6 |
issn | 2832-8337 |
language | eng |
recordid | cdi_ieee_primary_10577871 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Artificial intelligence Buildings Classification Data models Deep learning Fetal Hospitals Inpainting Medical diagnostic imaging Ultrasonic imaging Ultrasound |
title | Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhancing%20Fetal%20Classification%20Accuracy%20through%20Computer-Aided%20Impainting%20Techniques&rft.btitle=2024%20IEEE%2012th%20International%20Symposium%20on%20Signal,%20Image,%20Video%20and%20Communications%20(ISIVC)&rft.au=Zanbouaa,%20Asmae&rft.date=2024-05-21&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2832-8337&rft_id=info:doi/10.1109/ISIVC61350.2024.10577871&rft.eisbn=9798350385267&rft_dat=%3Cieee_CHZPO%3E10577871%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10577871&rfr_iscdi=true |