Loading…

Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques

To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems...

Full description

Saved in:
Bibliographic Details
Main Authors: Zanbouaa, Asmae, Zrira, Nabila, Slimani, Saad, Allak, Anass, Benmiloud, Ibtissam, Bouyakhf, El Houssine
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Zanbouaa, Asmae
Zrira, Nabila
Slimani, Saad
Allak, Anass
Benmiloud, Ibtissam
Bouyakhf, El Houssine
description To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.
doi_str_mv 10.1109/ISIVC61350.2024.10577871
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10577871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10577871</ieee_id><sourcerecordid>10577871</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453</originalsourceid><addsrcrecordid>eNo1kMtKw0AARUdBsNT8gYv5gdR5P5YhtBoouDC4LZPJTDOSTGImWfTvrWhXFy6cy-ECADHaYYz0S_VRfZYCU452BBG2w4hLqSS-A5mWWl17qjgR8h5siKIkV5TKR5Cl9IUQolhpxvUG1PvYmWhDPMODW0wPy96kFHywZgljhIW162zsBS7dPK7nDpbjMK2Lm_MitK6F1TCZEJdfvna2i-F7dekJPHjTJ5f95xbUh31dvuXH99eqLI55YJrmUjeecOWxo0I0wnPimRFSI6bkVdEq5hgzzFBpPEFYeW6Rsr6RumVSMU634PlvNjjnTtMcBjNfTrcf6A9zNlKO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><source>IEEE Xplore All Conference Series</source><creator>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</creator><creatorcontrib>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</creatorcontrib><description>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</description><identifier>EISSN: 2832-8337</identifier><identifier>EISBN: 9798350385267</identifier><identifier>DOI: 10.1109/ISIVC61350.2024.10577871</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Buildings ; Classification ; Data models ; Deep learning ; Fetal ; Hospitals ; Inpainting ; Medical diagnostic imaging ; Ultrasonic imaging ; Ultrasound</subject><ispartof>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10577871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10577871$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanbouaa, Asmae</creatorcontrib><creatorcontrib>Zrira, Nabila</creatorcontrib><creatorcontrib>Slimani, Saad</creatorcontrib><creatorcontrib>Allak, Anass</creatorcontrib><creatorcontrib>Benmiloud, Ibtissam</creatorcontrib><creatorcontrib>Bouyakhf, El Houssine</creatorcontrib><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><title>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC)</title><addtitle>ISIVC</addtitle><description>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Buildings</subject><subject>Classification</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Fetal</subject><subject>Hospitals</subject><subject>Inpainting</subject><subject>Medical diagnostic imaging</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2832-8337</issn><isbn>9798350385267</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw0AARUdBsNT8gYv5gdR5P5YhtBoouDC4LZPJTDOSTGImWfTvrWhXFy6cy-ECADHaYYz0S_VRfZYCU452BBG2w4hLqSS-A5mWWl17qjgR8h5siKIkV5TKR5Cl9IUQolhpxvUG1PvYmWhDPMODW0wPy96kFHywZgljhIW162zsBS7dPK7nDpbjMK2Lm_MitK6F1TCZEJdfvna2i-F7dekJPHjTJ5f95xbUh31dvuXH99eqLI55YJrmUjeecOWxo0I0wnPimRFSI6bkVdEq5hgzzFBpPEFYeW6Rsr6RumVSMU634PlvNjjnTtMcBjNfTrcf6A9zNlKO</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Zanbouaa, Asmae</creator><creator>Zrira, Nabila</creator><creator>Slimani, Saad</creator><creator>Allak, Anass</creator><creator>Benmiloud, Ibtissam</creator><creator>Bouyakhf, El Houssine</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240521</creationdate><title>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</title><author>Zanbouaa, Asmae ; Zrira, Nabila ; Slimani, Saad ; Allak, Anass ; Benmiloud, Ibtissam ; Bouyakhf, El Houssine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Buildings</topic><topic>Classification</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Fetal</topic><topic>Hospitals</topic><topic>Inpainting</topic><topic>Medical diagnostic imaging</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>online_resources</toplevel><creatorcontrib>Zanbouaa, Asmae</creatorcontrib><creatorcontrib>Zrira, Nabila</creatorcontrib><creatorcontrib>Slimani, Saad</creatorcontrib><creatorcontrib>Allak, Anass</creatorcontrib><creatorcontrib>Benmiloud, Ibtissam</creatorcontrib><creatorcontrib>Bouyakhf, El Houssine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanbouaa, Asmae</au><au>Zrira, Nabila</au><au>Slimani, Saad</au><au>Allak, Anass</au><au>Benmiloud, Ibtissam</au><au>Bouyakhf, El Houssine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques</atitle><btitle>2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC)</btitle><stitle>ISIVC</stitle><date>2024-05-21</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2832-8337</eissn><eisbn>9798350385267</eisbn><abstract>To improve fetal classification accuracy, computer aided techniques have been created to assist doctors in classifying various planes of fetal scans, thereby eliminating errors associated with traditional diagnostic procedures that rely primarily on medical skills. The effectiveness of these systems is critical to achieving high-quality categorization results. Even though various state-of-the-art approaches have been undertaken in this area, their effectiveness remains limited due to a primary focus on model building while neglecting fundamental data preparation. To address these issues, this research provides an ultrasound image-based classification method for fetal planes (i.e., cephalic, abdominal, and femur) that uses artificial intelligence applied to inpainted images, emphasizing the importance of this approach. Furthermore, our studies have been carried out using a carefully annotated dataset gathered from different hospitals in Morocco.</abstract><pub>IEEE</pub><doi>10.1109/ISIVC61350.2024.10577871</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2832-8337
ispartof 2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), 2024, p.1-6
issn 2832-8337
language eng
recordid cdi_ieee_primary_10577871
source IEEE Xplore All Conference Series
subjects Accuracy
Artificial intelligence
Buildings
Classification
Data models
Deep learning
Fetal
Hospitals
Inpainting
Medical diagnostic imaging
Ultrasonic imaging
Ultrasound
title Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhancing%20Fetal%20Classification%20Accuracy%20through%20Computer-Aided%20Impainting%20Techniques&rft.btitle=2024%20IEEE%2012th%20International%20Symposium%20on%20Signal,%20Image,%20Video%20and%20Communications%20(ISIVC)&rft.au=Zanbouaa,%20Asmae&rft.date=2024-05-21&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2832-8337&rft_id=info:doi/10.1109/ISIVC61350.2024.10577871&rft.eisbn=9798350385267&rft_dat=%3Cieee_CHZPO%3E10577871%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-79bf258f1e366b6f52f4a6790487000c84e44a4a37af2018f5c08cfb79d478453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10577871&rfr_iscdi=true