Loading…

Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms

Humans and machines vary in the accuracy with which they recognize faces of different races. This can impact the fairness of face identification in security and forensic settings. We introduce a protocol for designing a cross-race face identification test for evaluating people (e.g., forensic facial...

Full description

Saved in:
Bibliographic Details
Main Authors: Jeckeln, Geraldine, Yavuzcan, Selin, Marquis, Kate A., Mehta, Prajay S., Yates, Amy N., Phillips, P. Jonathon, O'Toole, Alice J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Jeckeln, Geraldine
Yavuzcan, Selin
Marquis, Kate A.
Mehta, Prajay S.
Yates, Amy N.
Phillips, P. Jonathon
O'Toole, Alice J.
description Humans and machines vary in the accuracy with which they recognize faces of different races. This can impact the fairness of face identification in security and forensic settings. We introduce a protocol for designing a cross-race face identification test for evaluating people (e.g., forensic facial examiners, super-recognizers) and machines with superior face-identification ability. We followed this protocol to create a cross-race test and report the test's benchmarks on untrained human participants and two state-of-the-art face recognition algorithms. The goal of the protocol is to select a relatively small number of challenging test items (facial image comparisons) of two races, with approximately equally challenging items of both races. Item selection consisted of pre-screening with an open-source face recognition algorithm, followed by a second round of prescreening using the performance of untrained human participants. We sampled face-images (Black and White identities) from a large biometric data set and applied the protocol to assemble face comparisons. The protocol yielded a cross-race test with 20 comparison pairs portraying Black and White identities (10 same-identity; 10 different-identity). Untrained participants (54 Black; 51 White) judged whether face-image pairs showed the same or different identities using a 7-point scale. By design, the test proved challenging for untrained participants, with performance comparable across Black and White image pairs for both Black and White participants. Two top-performing face recognition systems from the Face Recognition Vendor Test-ongoing [6] scored perfectly (no errors) on both Black and White face-image pairs from the Cross-Race Test. The human and machine benchmarks established here make this test ideal for evaluating cross-race face recognition bias in people with high levels of skill and training.
doi_str_mv 10.1109/FG59268.2024.10581916
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10581916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10581916</ieee_id><sourcerecordid>10581916</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-ecb51551a398531d8c13f8a195bb882aff25be5935ba72754501f81dbc0f1d1c3</originalsourceid><addsrcrecordid>eNo1kF9LwzAUxaMgOOa-gUI-gJ339jZr8jjmqsJAmPN5pOnNjHTtSCqon94_06cDP87vPBwhrhCmiGBuqjtl8pme5pAXUwSl0eDsRExMaTQpIFOYQp-KUV6WkGkiOBeTlF4BgAABiUaiveUUdl3odnIR-5SytXUsN5yGJH0fZdVH7lJwsrIu2FYu3-0-dBzTtXx6O3DMIrv-2__8RbZrfoos10c6hL6T83bXxzC87NOFOPO2TTz5y7F4rpabxX22erx7WMxXWUAqhoxdrVAptGS0Imy0Q_LaolF1rXVuvc9VzcqQqm2Zl6pQgF5jUzvw2KCjsbg87gZm3h5i2Nv4sf0_iL4AnDtaog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms</title><source>IEEE Xplore All Conference Series</source><creator>Jeckeln, Geraldine ; Yavuzcan, Selin ; Marquis, Kate A. ; Mehta, Prajay S. ; Yates, Amy N. ; Phillips, P. Jonathon ; O'Toole, Alice J.</creator><creatorcontrib>Jeckeln, Geraldine ; Yavuzcan, Selin ; Marquis, Kate A. ; Mehta, Prajay S. ; Yates, Amy N. ; Phillips, P. Jonathon ; O'Toole, Alice J.</creatorcontrib><description>Humans and machines vary in the accuracy with which they recognize faces of different races. This can impact the fairness of face identification in security and forensic settings. We introduce a protocol for designing a cross-race face identification test for evaluating people (e.g., forensic facial examiners, super-recognizers) and machines with superior face-identification ability. We followed this protocol to create a cross-race test and report the test's benchmarks on untrained human participants and two state-of-the-art face recognition algorithms. The goal of the protocol is to select a relatively small number of challenging test items (facial image comparisons) of two races, with approximately equally challenging items of both races. Item selection consisted of pre-screening with an open-source face recognition algorithm, followed by a second round of prescreening using the performance of untrained human participants. We sampled face-images (Black and White identities) from a large biometric data set and applied the protocol to assemble face comparisons. The protocol yielded a cross-race test with 20 comparison pairs portraying Black and White identities (10 same-identity; 10 different-identity). Untrained participants (54 Black; 51 White) judged whether face-image pairs showed the same or different identities using a 7-point scale. By design, the test proved challenging for untrained participants, with performance comparable across Black and White image pairs for both Black and White participants. Two top-performing face recognition systems from the Face Recognition Vendor Test-ongoing [6] scored perfectly (no errors) on both Black and White face-image pairs from the Cross-Race Test. The human and machine benchmarks established here make this test ideal for evaluating cross-race face recognition bias in people with high levels of skill and training.</description><identifier>EISSN: 2770-8330</identifier><identifier>EISBN: 9798350394948</identifier><identifier>DOI: 10.1109/FG59268.2024.10581916</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Deep learning ; Face recognition ; Field effect transistors ; Forensics ; Protocols ; Training</subject><ispartof>2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10581916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10581916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeckeln, Geraldine</creatorcontrib><creatorcontrib>Yavuzcan, Selin</creatorcontrib><creatorcontrib>Marquis, Kate A.</creatorcontrib><creatorcontrib>Mehta, Prajay S.</creatorcontrib><creatorcontrib>Yates, Amy N.</creatorcontrib><creatorcontrib>Phillips, P. Jonathon</creatorcontrib><creatorcontrib>O'Toole, Alice J.</creatorcontrib><title>Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms</title><title>2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG)</title><addtitle>FG</addtitle><description>Humans and machines vary in the accuracy with which they recognize faces of different races. This can impact the fairness of face identification in security and forensic settings. We introduce a protocol for designing a cross-race face identification test for evaluating people (e.g., forensic facial examiners, super-recognizers) and machines with superior face-identification ability. We followed this protocol to create a cross-race test and report the test's benchmarks on untrained human participants and two state-of-the-art face recognition algorithms. The goal of the protocol is to select a relatively small number of challenging test items (facial image comparisons) of two races, with approximately equally challenging items of both races. Item selection consisted of pre-screening with an open-source face recognition algorithm, followed by a second round of prescreening using the performance of untrained human participants. We sampled face-images (Black and White identities) from a large biometric data set and applied the protocol to assemble face comparisons. The protocol yielded a cross-race test with 20 comparison pairs portraying Black and White identities (10 same-identity; 10 different-identity). Untrained participants (54 Black; 51 White) judged whether face-image pairs showed the same or different identities using a 7-point scale. By design, the test proved challenging for untrained participants, with performance comparable across Black and White image pairs for both Black and White participants. Two top-performing face recognition systems from the Face Recognition Vendor Test-ongoing [6] scored perfectly (no errors) on both Black and White face-image pairs from the Cross-Race Test. The human and machine benchmarks established here make this test ideal for evaluating cross-race face recognition bias in people with high levels of skill and training.</description><subject>Accuracy</subject><subject>Deep learning</subject><subject>Face recognition</subject><subject>Field effect transistors</subject><subject>Forensics</subject><subject>Protocols</subject><subject>Training</subject><issn>2770-8330</issn><isbn>9798350394948</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF9LwzAUxaMgOOa-gUI-gJ339jZr8jjmqsJAmPN5pOnNjHTtSCqon94_06cDP87vPBwhrhCmiGBuqjtl8pme5pAXUwSl0eDsRExMaTQpIFOYQp-KUV6WkGkiOBeTlF4BgAABiUaiveUUdl3odnIR-5SytXUsN5yGJH0fZdVH7lJwsrIu2FYu3-0-dBzTtXx6O3DMIrv-2__8RbZrfoos10c6hL6T83bXxzC87NOFOPO2TTz5y7F4rpabxX22erx7WMxXWUAqhoxdrVAptGS0Imy0Q_LaolF1rXVuvc9VzcqQqm2Zl6pQgF5jUzvw2KCjsbg87gZm3h5i2Nv4sf0_iL4AnDtaog</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Jeckeln, Geraldine</creator><creator>Yavuzcan, Selin</creator><creator>Marquis, Kate A.</creator><creator>Mehta, Prajay S.</creator><creator>Yates, Amy N.</creator><creator>Phillips, P. Jonathon</creator><creator>O'Toole, Alice J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240527</creationdate><title>Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms</title><author>Jeckeln, Geraldine ; Yavuzcan, Selin ; Marquis, Kate A. ; Mehta, Prajay S. ; Yates, Amy N. ; Phillips, P. Jonathon ; O'Toole, Alice J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-ecb51551a398531d8c13f8a195bb882aff25be5935ba72754501f81dbc0f1d1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Deep learning</topic><topic>Face recognition</topic><topic>Field effect transistors</topic><topic>Forensics</topic><topic>Protocols</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeckeln, Geraldine</creatorcontrib><creatorcontrib>Yavuzcan, Selin</creatorcontrib><creatorcontrib>Marquis, Kate A.</creatorcontrib><creatorcontrib>Mehta, Prajay S.</creatorcontrib><creatorcontrib>Yates, Amy N.</creatorcontrib><creatorcontrib>Phillips, P. Jonathon</creatorcontrib><creatorcontrib>O'Toole, Alice J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeckeln, Geraldine</au><au>Yavuzcan, Selin</au><au>Marquis, Kate A.</au><au>Mehta, Prajay S.</au><au>Yates, Amy N.</au><au>Phillips, P. Jonathon</au><au>O'Toole, Alice J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms</atitle><btitle>2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG)</btitle><stitle>FG</stitle><date>2024-05-27</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2770-8330</eissn><eisbn>9798350394948</eisbn><abstract>Humans and machines vary in the accuracy with which they recognize faces of different races. This can impact the fairness of face identification in security and forensic settings. We introduce a protocol for designing a cross-race face identification test for evaluating people (e.g., forensic facial examiners, super-recognizers) and machines with superior face-identification ability. We followed this protocol to create a cross-race test and report the test's benchmarks on untrained human participants and two state-of-the-art face recognition algorithms. The goal of the protocol is to select a relatively small number of challenging test items (facial image comparisons) of two races, with approximately equally challenging items of both races. Item selection consisted of pre-screening with an open-source face recognition algorithm, followed by a second round of prescreening using the performance of untrained human participants. We sampled face-images (Black and White identities) from a large biometric data set and applied the protocol to assemble face comparisons. The protocol yielded a cross-race test with 20 comparison pairs portraying Black and White identities (10 same-identity; 10 different-identity). Untrained participants (54 Black; 51 White) judged whether face-image pairs showed the same or different identities using a 7-point scale. By design, the test proved challenging for untrained participants, with performance comparable across Black and White image pairs for both Black and White participants. Two top-performing face recognition systems from the Face Recognition Vendor Test-ongoing [6] scored perfectly (no errors) on both Black and White face-image pairs from the Cross-Race Test. The human and machine benchmarks established here make this test ideal for evaluating cross-race face recognition bias in people with high levels of skill and training.</abstract><pub>IEEE</pub><doi>10.1109/FG59268.2024.10581916</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2770-8330
ispartof 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG), 2024, p.1-8
issn 2770-8330
language eng
recordid cdi_ieee_primary_10581916
source IEEE Xplore All Conference Series
subjects Accuracy
Deep learning
Face recognition
Field effect transistors
Forensics
Protocols
Training
title Designing Cross-Race Tests for Forensic Facial Examiners, Super-recognizers, and Face Recognition Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Designing%20Cross-Race%20Tests%20for%20Forensic%20Facial%20Examiners,%20Super-recognizers,%20and%20Face%20Recognition%20Algorithms&rft.btitle=2024%20IEEE%2018th%20International%20Conference%20on%20Automatic%20Face%20and%20Gesture%20Recognition%20(FG)&rft.au=Jeckeln,%20Geraldine&rft.date=2024-05-27&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2770-8330&rft_id=info:doi/10.1109/FG59268.2024.10581916&rft.eisbn=9798350394948&rft_dat=%3Cieee_CHZPO%3E10581916%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-ecb51551a398531d8c13f8a195bb882aff25be5935ba72754501f81dbc0f1d1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10581916&rfr_iscdi=true