Loading…

The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization

This paper investigates the impact of a corrupted map on the quality of GNSS-free localization. Using a High Definition (HD) map, we gradually remove and shift features in space. From originally 200 features per kilometer, we randomly discard up to 90% of our map and introduce perturbations of up to...

Full description

Saved in:
Bibliographic Details
Main Authors: Beer, Lukas, Luettel, Thorsten, Maehlisch, Mirko
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 123
container_issue
container_start_page 118
container_title
container_volume
creator Beer, Lukas
Luettel, Thorsten
Maehlisch, Mirko
description This paper investigates the impact of a corrupted map on the quality of GNSS-free localization. Using a High Definition (HD) map, we gradually remove and shift features in space. From originally 200 features per kilometer, we randomly discard up to 90% of our map and introduce perturbations of up to +/-0.9m in each direction to our HD map features. Our evaluation is based on a GNSS-free LiDAR-SLAM, which utilizes panoptic segmentation to observe geometric primitives. In the back-end, a graph optimization is performed to estimate the vehicle's and the landmarks' positions. Further, we also assess the impact of conducting pure localization instead of Simultaneous Localization and Mapping (SLAM). The effects are evaluated using Mean Absolute Error for accuracy evaluation. For stability assessment, we calculate two percentiles: one for deviations of 0.3m or less and the second for deviations of 2m or less. We conduct real-life experiments with our testing vehicle which is equipped with a reference system based on RTK-GNSS. We use a commercial, standardized HD map of our suburban campus. Our findings aim to provide insights into the tradeoffs between mapping effort, map maintenance and accurate positioning. We demonstrate that a simultaneous mapping of the environment enhances the stability of localization.
doi_str_mv 10.1109/IV55156.2024.10588395
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10588395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10588395</ieee_id><sourcerecordid>10588395</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-1a3e4cf72e69dc08bedf1f41179ee82624a08684a1efa3956ecd4c9c00d227f73</originalsourceid><addsrcrecordid>eNo1kN9OwjAYxauJiYi8gSZ9AIb9urZrvTMIuATjhcAtqe23MTPWZSsm-PQS1Kvz5-KXnEPIPbAJADMP-UZKkGrCGRcTYFLr1MgLMjKZ0alkqdAa4JIMuBI8yTiIa3LT95-MSck5DMhhtUO6CMGPaTy599Z2PY6pbfw5r8v6-Ejz5gv7WJU2Vk157vN9a12koaDT0HWHNqKnL8_Jq23pHG08dNjT0NBZGZIN7ipXI10GZ-vq-8QIzS25Kmzd4-hPh2Q9n62mL8nybZFPn5ZJBUzFBGyKwhUZR2W8Y_oDfQGFAMgMouaKC8u00sICFva0W6HzwhnHmOc8K7J0SO5-uRUibtuu2tvuuP2_Kf0Bj8ZcYA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization</title><source>IEEE Xplore All Conference Series</source><creator>Beer, Lukas ; Luettel, Thorsten ; Maehlisch, Mirko</creator><creatorcontrib>Beer, Lukas ; Luettel, Thorsten ; Maehlisch, Mirko</creatorcontrib><description>This paper investigates the impact of a corrupted map on the quality of GNSS-free localization. Using a High Definition (HD) map, we gradually remove and shift features in space. From originally 200 features per kilometer, we randomly discard up to 90% of our map and introduce perturbations of up to +/-0.9m in each direction to our HD map features. Our evaluation is based on a GNSS-free LiDAR-SLAM, which utilizes panoptic segmentation to observe geometric primitives. In the back-end, a graph optimization is performed to estimate the vehicle's and the landmarks' positions. Further, we also assess the impact of conducting pure localization instead of Simultaneous Localization and Mapping (SLAM). The effects are evaluated using Mean Absolute Error for accuracy evaluation. For stability assessment, we calculate two percentiles: one for deviations of 0.3m or less and the second for deviations of 2m or less. We conduct real-life experiments with our testing vehicle which is equipped with a reference system based on RTK-GNSS. We use a commercial, standardized HD map of our suburban campus. Our findings aim to provide insights into the tradeoffs between mapping effort, map maintenance and accurate positioning. We demonstrate that a simultaneous mapping of the environment enhances the stability of localization.</description><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 9798350348811</identifier><identifier>DOI: 10.1109/IV55156.2024.10588395</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; HD map ; Intelligent vehicles ; LiDAR ; localization ; Location awareness ; Maintenance ; Optimization ; Perturbation methods ; Simultaneous localization and mapping ; SLAM</subject><ispartof>2024 IEEE Intelligent Vehicles Symposium (IV), 2024, p.118-123</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10588395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10588395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beer, Lukas</creatorcontrib><creatorcontrib>Luettel, Thorsten</creatorcontrib><creatorcontrib>Maehlisch, Mirko</creatorcontrib><title>The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization</title><title>2024 IEEE Intelligent Vehicles Symposium (IV)</title><addtitle>IV</addtitle><description>This paper investigates the impact of a corrupted map on the quality of GNSS-free localization. Using a High Definition (HD) map, we gradually remove and shift features in space. From originally 200 features per kilometer, we randomly discard up to 90% of our map and introduce perturbations of up to +/-0.9m in each direction to our HD map features. Our evaluation is based on a GNSS-free LiDAR-SLAM, which utilizes panoptic segmentation to observe geometric primitives. In the back-end, a graph optimization is performed to estimate the vehicle's and the landmarks' positions. Further, we also assess the impact of conducting pure localization instead of Simultaneous Localization and Mapping (SLAM). The effects are evaluated using Mean Absolute Error for accuracy evaluation. For stability assessment, we calculate two percentiles: one for deviations of 0.3m or less and the second for deviations of 2m or less. We conduct real-life experiments with our testing vehicle which is equipped with a reference system based on RTK-GNSS. We use a commercial, standardized HD map of our suburban campus. Our findings aim to provide insights into the tradeoffs between mapping effort, map maintenance and accurate positioning. We demonstrate that a simultaneous mapping of the environment enhances the stability of localization.</description><subject>Accuracy</subject><subject>HD map</subject><subject>Intelligent vehicles</subject><subject>LiDAR</subject><subject>localization</subject><subject>Location awareness</subject><subject>Maintenance</subject><subject>Optimization</subject><subject>Perturbation methods</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><issn>2642-7214</issn><isbn>9798350348811</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN9OwjAYxauJiYi8gSZ9AIb9urZrvTMIuATjhcAtqe23MTPWZSsm-PQS1Kvz5-KXnEPIPbAJADMP-UZKkGrCGRcTYFLr1MgLMjKZ0alkqdAa4JIMuBI8yTiIa3LT95-MSck5DMhhtUO6CMGPaTy599Z2PY6pbfw5r8v6-Ejz5gv7WJU2Vk157vN9a12koaDT0HWHNqKnL8_Jq23pHG08dNjT0NBZGZIN7ipXI10GZ-vq-8QIzS25Kmzd4-hPh2Q9n62mL8nybZFPn5ZJBUzFBGyKwhUZR2W8Y_oDfQGFAMgMouaKC8u00sICFva0W6HzwhnHmOc8K7J0SO5-uRUibtuu2tvuuP2_Kf0Bj8ZcYA</recordid><startdate>20240602</startdate><enddate>20240602</enddate><creator>Beer, Lukas</creator><creator>Luettel, Thorsten</creator><creator>Maehlisch, Mirko</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240602</creationdate><title>The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization</title><author>Beer, Lukas ; Luettel, Thorsten ; Maehlisch, Mirko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-1a3e4cf72e69dc08bedf1f41179ee82624a08684a1efa3956ecd4c9c00d227f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>HD map</topic><topic>Intelligent vehicles</topic><topic>LiDAR</topic><topic>localization</topic><topic>Location awareness</topic><topic>Maintenance</topic><topic>Optimization</topic><topic>Perturbation methods</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><toplevel>online_resources</toplevel><creatorcontrib>Beer, Lukas</creatorcontrib><creatorcontrib>Luettel, Thorsten</creatorcontrib><creatorcontrib>Maehlisch, Mirko</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beer, Lukas</au><au>Luettel, Thorsten</au><au>Maehlisch, Mirko</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization</atitle><btitle>2024 IEEE Intelligent Vehicles Symposium (IV)</btitle><stitle>IV</stitle><date>2024-06-02</date><risdate>2024</risdate><spage>118</spage><epage>123</epage><pages>118-123</pages><eissn>2642-7214</eissn><eisbn>9798350348811</eisbn><abstract>This paper investigates the impact of a corrupted map on the quality of GNSS-free localization. Using a High Definition (HD) map, we gradually remove and shift features in space. From originally 200 features per kilometer, we randomly discard up to 90% of our map and introduce perturbations of up to +/-0.9m in each direction to our HD map features. Our evaluation is based on a GNSS-free LiDAR-SLAM, which utilizes panoptic segmentation to observe geometric primitives. In the back-end, a graph optimization is performed to estimate the vehicle's and the landmarks' positions. Further, we also assess the impact of conducting pure localization instead of Simultaneous Localization and Mapping (SLAM). The effects are evaluated using Mean Absolute Error for accuracy evaluation. For stability assessment, we calculate two percentiles: one for deviations of 0.3m or less and the second for deviations of 2m or less. We conduct real-life experiments with our testing vehicle which is equipped with a reference system based on RTK-GNSS. We use a commercial, standardized HD map of our suburban campus. Our findings aim to provide insights into the tradeoffs between mapping effort, map maintenance and accurate positioning. We demonstrate that a simultaneous mapping of the environment enhances the stability of localization.</abstract><pub>IEEE</pub><doi>10.1109/IV55156.2024.10588395</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-7214
ispartof 2024 IEEE Intelligent Vehicles Symposium (IV), 2024, p.118-123
issn 2642-7214
language eng
recordid cdi_ieee_primary_10588395
source IEEE Xplore All Conference Series
subjects Accuracy
HD map
Intelligent vehicles
LiDAR
localization
Location awareness
Maintenance
Optimization
Perturbation methods
Simultaneous localization and mapping
SLAM
title The Good, the Sparse, and the Ugly: Investigating the Impact of Corrupted HD-Map Features on Ego-Vehicle Localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Good,%20the%20Sparse,%20and%20the%20Ugly:%20Investigating%20the%20Impact%20of%20Corrupted%20HD-Map%20Features%20on%20Ego-Vehicle%20Localization&rft.btitle=2024%20IEEE%20Intelligent%20Vehicles%20Symposium%20(IV)&rft.au=Beer,%20Lukas&rft.date=2024-06-02&rft.spage=118&rft.epage=123&rft.pages=118-123&rft.eissn=2642-7214&rft_id=info:doi/10.1109/IV55156.2024.10588395&rft.eisbn=9798350348811&rft_dat=%3Cieee_CHZPO%3E10588395%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-1a3e4cf72e69dc08bedf1f41179ee82624a08684a1efa3956ecd4c9c00d227f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10588395&rfr_iscdi=true