Loading…
Event-Triggered Attitude Controller Design for Unmanned Aerial Vehicles under Cyber Attacks
This paper proposes an event-triggered attitude controller design method for unmanned aerial vehicles (UAVs) under cyber attacks. Versatile UAVs are capable of transmitting the measurement or receiving control signals through network channels. In the controller design for such UAVs, it is required t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an event-triggered attitude controller design method for unmanned aerial vehicles (UAVs) under cyber attacks. Versatile UAVs are capable of transmitting the measurement or receiving control signals through network channels. In the controller design for such UAVs, it is required to consider two distinctive features. The first one is that the strategy of updating the control signal is important for saving the limited energy consumption. The other one is that the UAVs are vulnerably exposed to threats of malicious attacks through network channels. For enhanced energy efficiency and improved stability, the event-triggered mechanism (ETM) and the attitude controller are simultaneously designed. By utilizing Lyapunov- Krasovskii functionals (LKFs), the sufficient conditions for the co-design are derived in terms of linear matrix inequalities (LMIs). For a 3-degrees of freedom (DOF) quadcopter system, the simulation results are presented to validate the proposed attitude control method. |
---|---|
ISSN: | 2163-5145 |
DOI: | 10.1109/ISIE54533.2024.10595751 |