Loading…

Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators

In recent decades, the demand for computational power has surged, particularly with the rapid expansion of artificial intelligence (AI). As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2024-11, Vol.42 (22), p.7834-7859
Main Authors: Ning, Shupeng, Zhu, Hanqing, Feng, Chenghao, Gu, Jiaqi, Jiang, Zhixing, Ying, Zhoufeng, Midkiff, Jason, Jain, Sourabh, Hlaing, May H., Pan, David Z., Chen, Ray T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7859
container_issue 22
container_start_page 7834
container_title Journal of lightwave technology
container_volume 42
creator Ning, Shupeng
Zhu, Hanqing
Feng, Chenghao
Gu, Jiaqi
Jiang, Zhixing
Ying, Zhoufeng
Midkiff, Jason
Jain, Sourabh
Hlaing, May H.
Pan, David Z.
Chen, Ray T.
description In recent decades, the demand for computational power has surged, particularly with the rapid expansion of artificial intelligence (AI). As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issues, are propelling the search for alternative computing paradigms. Among various emerging technologies, integrated photonics stands out as a promising solution for next-generation high-performance computing, thanks to the inherent advantages of light, such as low latency, high bandwidth, and unique multiplexing techniques. Furthermore, the progress in photonic integrated circuits (PICs), which are equipped with abundant photoelectronic components, positions photonic-electronic integrated circuits as a viable solution for high-performance computing and hardware AI accelerators. In this review, we survey recent advancements in both PIC-based digital and analog computing for AI, exploring the principal benefits and obstacles of implementation. Additionally, we propose a comprehensive analysis of photonic AI from the perspectives of hardware implementation, accelerator architecture, and software-hardware co-design. In the end, acknowledging the existing challenges, we underscore potential strategies for overcoming these issues and offer insights into the future drivers for optical computing.
doi_str_mv 10.1109/JLT.2024.3427716
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10598302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10598302</ieee_id><sourcerecordid>10_1109_JLT_2024_3427716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-a5d6a99892004b921ed951ee7be50cc06ac2c420f32ee85ae4900609092417853</originalsourceid><addsrcrecordid>eNpNkD1vwjAURa2qlUpp9w4d_AdCn79ie0QRLVRIZaBLl8g4L-AKEmSbof--QTB0une45w6HkGcGE8bAvn4s1xMOXE6E5Fqz8oaMmFKm4JyJWzICLURhNJf35CGlHwAmpdEj8r3a9bnvgi9me_Q5nitddBm30WVsaBWiP4WcaNtHOg_bXbHCOPSD6zzSqj8cTzl0W-q6hk4XdOo97nFA-5geyV3r9gmfrjkmX2-zdTUvlp_vi2q6LDyTOhdONaWz1lgOIDeWM2ysYoh6gwq8h9J57iWHVnBEoxxKC1CCBcsl00aJMYHLr499ShHb-hjDwcXfmkF9dlMPbuqzm_rqZkBeLkhAxH9zZY0ALv4A53pgOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators</title><source>IEEE Xplore (Online service)</source><creator>Ning, Shupeng ; Zhu, Hanqing ; Feng, Chenghao ; Gu, Jiaqi ; Jiang, Zhixing ; Ying, Zhoufeng ; Midkiff, Jason ; Jain, Sourabh ; Hlaing, May H. ; Pan, David Z. ; Chen, Ray T.</creator><creatorcontrib>Ning, Shupeng ; Zhu, Hanqing ; Feng, Chenghao ; Gu, Jiaqi ; Jiang, Zhixing ; Ying, Zhoufeng ; Midkiff, Jason ; Jain, Sourabh ; Hlaing, May H. ; Pan, David Z. ; Chen, Ray T.</creatorcontrib><description>In recent decades, the demand for computational power has surged, particularly with the rapid expansion of artificial intelligence (AI). As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issues, are propelling the search for alternative computing paradigms. Among various emerging technologies, integrated photonics stands out as a promising solution for next-generation high-performance computing, thanks to the inherent advantages of light, such as low latency, high bandwidth, and unique multiplexing techniques. Furthermore, the progress in photonic integrated circuits (PICs), which are equipped with abundant photoelectronic components, positions photonic-electronic integrated circuits as a viable solution for high-performance computing and hardware AI accelerators. In this review, we survey recent advancements in both PIC-based digital and analog computing for AI, exploring the principal benefits and obstacles of implementation. Additionally, we propose a comprehensive analysis of photonic AI from the perspectives of hardware implementation, accelerator architecture, and software-hardware co-design. In the end, acknowledging the existing challenges, we underscore potential strategies for overcoming these issues and offer insights into the future drivers for optical computing.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3427716</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>AI accelerator ; High-speed optical techniques ; Integrated optics ; Logic ; Logic gates ; Optical computing ; Optical network units ; optical neural network ; photonic integrated circuit ; Photonics ; silicon photonics</subject><ispartof>Journal of lightwave technology, 2024-11, Vol.42 (22), p.7834-7859</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5705-2501 ; 0000-0001-8535-7698 ; 0000-0002-5780-9711 ; 0000-0002-7992-3275 ; 0000-0003-1974-5128 ; 0000-0003-4501-2446 ; 0000-0002-9181-4266 ; 0000-0003-1020-8705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10598302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ning, Shupeng</creatorcontrib><creatorcontrib>Zhu, Hanqing</creatorcontrib><creatorcontrib>Feng, Chenghao</creatorcontrib><creatorcontrib>Gu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Zhixing</creatorcontrib><creatorcontrib>Ying, Zhoufeng</creatorcontrib><creatorcontrib>Midkiff, Jason</creatorcontrib><creatorcontrib>Jain, Sourabh</creatorcontrib><creatorcontrib>Hlaing, May H.</creatorcontrib><creatorcontrib>Pan, David Z.</creatorcontrib><creatorcontrib>Chen, Ray T.</creatorcontrib><title>Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In recent decades, the demand for computational power has surged, particularly with the rapid expansion of artificial intelligence (AI). As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issues, are propelling the search for alternative computing paradigms. Among various emerging technologies, integrated photonics stands out as a promising solution for next-generation high-performance computing, thanks to the inherent advantages of light, such as low latency, high bandwidth, and unique multiplexing techniques. Furthermore, the progress in photonic integrated circuits (PICs), which are equipped with abundant photoelectronic components, positions photonic-electronic integrated circuits as a viable solution for high-performance computing and hardware AI accelerators. In this review, we survey recent advancements in both PIC-based digital and analog computing for AI, exploring the principal benefits and obstacles of implementation. Additionally, we propose a comprehensive analysis of photonic AI from the perspectives of hardware implementation, accelerator architecture, and software-hardware co-design. In the end, acknowledging the existing challenges, we underscore potential strategies for overcoming these issues and offer insights into the future drivers for optical computing.</description><subject>AI accelerator</subject><subject>High-speed optical techniques</subject><subject>Integrated optics</subject><subject>Logic</subject><subject>Logic gates</subject><subject>Optical computing</subject><subject>Optical network units</subject><subject>optical neural network</subject><subject>photonic integrated circuit</subject><subject>Photonics</subject><subject>silicon photonics</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1vwjAURa2qlUpp9w4d_AdCn79ie0QRLVRIZaBLl8g4L-AKEmSbof--QTB0une45w6HkGcGE8bAvn4s1xMOXE6E5Fqz8oaMmFKm4JyJWzICLURhNJf35CGlHwAmpdEj8r3a9bnvgi9me_Q5nitddBm30WVsaBWiP4WcaNtHOg_bXbHCOPSD6zzSqj8cTzl0W-q6hk4XdOo97nFA-5geyV3r9gmfrjkmX2-zdTUvlp_vi2q6LDyTOhdONaWz1lgOIDeWM2ysYoh6gwq8h9J57iWHVnBEoxxKC1CCBcsl00aJMYHLr499ShHb-hjDwcXfmkF9dlMPbuqzm_rqZkBeLkhAxH9zZY0ALv4A53pgOQ</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Ning, Shupeng</creator><creator>Zhu, Hanqing</creator><creator>Feng, Chenghao</creator><creator>Gu, Jiaqi</creator><creator>Jiang, Zhixing</creator><creator>Ying, Zhoufeng</creator><creator>Midkiff, Jason</creator><creator>Jain, Sourabh</creator><creator>Hlaing, May H.</creator><creator>Pan, David Z.</creator><creator>Chen, Ray T.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5705-2501</orcidid><orcidid>https://orcid.org/0000-0001-8535-7698</orcidid><orcidid>https://orcid.org/0000-0002-5780-9711</orcidid><orcidid>https://orcid.org/0000-0002-7992-3275</orcidid><orcidid>https://orcid.org/0000-0003-1974-5128</orcidid><orcidid>https://orcid.org/0000-0003-4501-2446</orcidid><orcidid>https://orcid.org/0000-0002-9181-4266</orcidid><orcidid>https://orcid.org/0000-0003-1020-8705</orcidid></search><sort><creationdate>20241115</creationdate><title>Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators</title><author>Ning, Shupeng ; Zhu, Hanqing ; Feng, Chenghao ; Gu, Jiaqi ; Jiang, Zhixing ; Ying, Zhoufeng ; Midkiff, Jason ; Jain, Sourabh ; Hlaing, May H. ; Pan, David Z. ; Chen, Ray T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-a5d6a99892004b921ed951ee7be50cc06ac2c420f32ee85ae4900609092417853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI accelerator</topic><topic>High-speed optical techniques</topic><topic>Integrated optics</topic><topic>Logic</topic><topic>Logic gates</topic><topic>Optical computing</topic><topic>Optical network units</topic><topic>optical neural network</topic><topic>photonic integrated circuit</topic><topic>Photonics</topic><topic>silicon photonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Shupeng</creatorcontrib><creatorcontrib>Zhu, Hanqing</creatorcontrib><creatorcontrib>Feng, Chenghao</creatorcontrib><creatorcontrib>Gu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Zhixing</creatorcontrib><creatorcontrib>Ying, Zhoufeng</creatorcontrib><creatorcontrib>Midkiff, Jason</creatorcontrib><creatorcontrib>Jain, Sourabh</creatorcontrib><creatorcontrib>Hlaing, May H.</creatorcontrib><creatorcontrib>Pan, David Z.</creatorcontrib><creatorcontrib>Chen, Ray T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Shupeng</au><au>Zhu, Hanqing</au><au>Feng, Chenghao</au><au>Gu, Jiaqi</au><au>Jiang, Zhixing</au><au>Ying, Zhoufeng</au><au>Midkiff, Jason</au><au>Jain, Sourabh</au><au>Hlaing, May H.</au><au>Pan, David Z.</au><au>Chen, Ray T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>42</volume><issue>22</issue><spage>7834</spage><epage>7859</epage><pages>7834-7859</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In recent decades, the demand for computational power has surged, particularly with the rapid expansion of artificial intelligence (AI). As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issues, are propelling the search for alternative computing paradigms. Among various emerging technologies, integrated photonics stands out as a promising solution for next-generation high-performance computing, thanks to the inherent advantages of light, such as low latency, high bandwidth, and unique multiplexing techniques. Furthermore, the progress in photonic integrated circuits (PICs), which are equipped with abundant photoelectronic components, positions photonic-electronic integrated circuits as a viable solution for high-performance computing and hardware AI accelerators. In this review, we survey recent advancements in both PIC-based digital and analog computing for AI, exploring the principal benefits and obstacles of implementation. Additionally, we propose a comprehensive analysis of photonic AI from the perspectives of hardware implementation, accelerator architecture, and software-hardware co-design. In the end, acknowledging the existing challenges, we underscore potential strategies for overcoming these issues and offer insights into the future drivers for optical computing.</abstract><pub>IEEE</pub><doi>10.1109/JLT.2024.3427716</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5705-2501</orcidid><orcidid>https://orcid.org/0000-0001-8535-7698</orcidid><orcidid>https://orcid.org/0000-0002-5780-9711</orcidid><orcidid>https://orcid.org/0000-0002-7992-3275</orcidid><orcidid>https://orcid.org/0000-0003-1974-5128</orcidid><orcidid>https://orcid.org/0000-0003-4501-2446</orcidid><orcidid>https://orcid.org/0000-0002-9181-4266</orcidid><orcidid>https://orcid.org/0000-0003-1020-8705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2024-11, Vol.42 (22), p.7834-7859
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_10598302
source IEEE Xplore (Online service)
subjects AI accelerator
High-speed optical techniques
Integrated optics
Logic
Logic gates
Optical computing
Optical network units
optical neural network
photonic integrated circuit
Photonics
silicon photonics
title Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic-Electronic%20Integrated%20Circuits%20for%20High-Performance%20Computing%20and%20AI%20Accelerators&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ning,%20Shupeng&rft.date=2024-11-15&rft.volume=42&rft.issue=22&rft.spage=7834&rft.epage=7859&rft.pages=7834-7859&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3427716&rft_dat=%3Ccrossref_ieee_%3E10_1109_JLT_2024_3427716%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c147t-a5d6a99892004b921ed951ee7be50cc06ac2c420f32ee85ae4900609092417853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10598302&rfr_iscdi=true