Loading…
A Forward Obstacle Detection Approach for Trains Based on 4D Radar
With the expansion of urban scale, rail transport has become an indispensable component of the city's public transportation. Achieving intelligent assisted driving in rail transport can reduce incidents due to driver factors. Sensors enabling accurate perception of the surrounding environment a...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1432 |
container_issue | |
container_start_page | 1426 |
container_title | |
container_volume | |
creator | Wang, Dajing Liu, Quanli Wang, Wei Yu, Zichen Liu, Xin |
description | With the expansion of urban scale, rail transport has become an indispensable component of the city's public transportation. Achieving intelligent assisted driving in rail transport can reduce incidents due to driver factors. Sensors enabling accurate perception of the surrounding environment are the prerequisite for intelligent assisted driving. 4D Radar generates point clouds that include both 3D position and velocity information. Especially, 4D Radar works well in bad weather conditions compared to Lidar and camera. This paper proposes an obstacle detection method based on 4D Radar in the train-travelling environment, which dynamically adjusts the obstacle detection range using DBSCAN. Moreover, the network is improved for the characteristic of sparse 4D Radar point cloud, and enhancing the detection capability of the network through the introduction of an attention module. Experimental results show that the method achieves satisfactory results in real scenarios and has great potential. |
doi_str_mv | 10.1109/YAC63405.2024.10598410 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10598410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10598410</ieee_id><sourcerecordid>10598410</sourcerecordid><originalsourceid>FETCH-ieee_primary_105984103</originalsourceid><addsrcrecordid>eNqFzrsKwjAUgOEoCIr2DUTOC1hPkl6SsRfFTZAuTnJsI1ZqW5KC-PY66Oz0D9_yM7bi6HOOenNKskgGGPoCReBzDLUKOI6Yp2OtZIgy1kKoMZsJJeO1ipBPmefcHRElV5rHOGNpArvOPslWcLi4gcrGQG4GUw5110LS97aj8gbXzkJhqW4dpORMBR8McjhSRXbBJldqnPG-nbPlbltk-3VtjDn3tn6QfZ1_e_IPvwHtpTvC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Forward Obstacle Detection Approach for Trains Based on 4D Radar</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Dajing ; Liu, Quanli ; Wang, Wei ; Yu, Zichen ; Liu, Xin</creator><creatorcontrib>Wang, Dajing ; Liu, Quanli ; Wang, Wei ; Yu, Zichen ; Liu, Xin</creatorcontrib><description>With the expansion of urban scale, rail transport has become an indispensable component of the city's public transportation. Achieving intelligent assisted driving in rail transport can reduce incidents due to driver factors. Sensors enabling accurate perception of the surrounding environment are the prerequisite for intelligent assisted driving. 4D Radar generates point clouds that include both 3D position and velocity information. Especially, 4D Radar works well in bad weather conditions compared to Lidar and camera. This paper proposes an obstacle detection method based on 4D Radar in the train-travelling environment, which dynamically adjusts the obstacle detection range using DBSCAN. Moreover, the network is improved for the characteristic of sparse 4D Radar point cloud, and enhancing the detection capability of the network through the introduction of an attention module. Experimental results show that the method achieves satisfactory results in real scenarios and has great potential.</description><identifier>EISSN: 2837-8601</identifier><identifier>EISBN: 9798350379228</identifier><identifier>DOI: 10.1109/YAC63405.2024.10598410</identifier><language>eng</language><publisher>IEEE</publisher><subject>4D Radar point clouds ; Accuracy ; intelligent train ; Point cloud compression ; Radar ; Radar detection ; Radar tracking ; Rails ; railway obstacle detection ; railway safety ; Three-dimensional displays</subject><ispartof>2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2024, p.1426-1432</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10598410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10598410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Dajing</creatorcontrib><creatorcontrib>Liu, Quanli</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yu, Zichen</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><title>A Forward Obstacle Detection Approach for Trains Based on 4D Radar</title><title>2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC)</title><addtitle>YAC</addtitle><description>With the expansion of urban scale, rail transport has become an indispensable component of the city's public transportation. Achieving intelligent assisted driving in rail transport can reduce incidents due to driver factors. Sensors enabling accurate perception of the surrounding environment are the prerequisite for intelligent assisted driving. 4D Radar generates point clouds that include both 3D position and velocity information. Especially, 4D Radar works well in bad weather conditions compared to Lidar and camera. This paper proposes an obstacle detection method based on 4D Radar in the train-travelling environment, which dynamically adjusts the obstacle detection range using DBSCAN. Moreover, the network is improved for the characteristic of sparse 4D Radar point cloud, and enhancing the detection capability of the network through the introduction of an attention module. Experimental results show that the method achieves satisfactory results in real scenarios and has great potential.</description><subject>4D Radar point clouds</subject><subject>Accuracy</subject><subject>intelligent train</subject><subject>Point cloud compression</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>Rails</subject><subject>railway obstacle detection</subject><subject>railway safety</subject><subject>Three-dimensional displays</subject><issn>2837-8601</issn><isbn>9798350379228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzrsKwjAUgOEoCIr2DUTOC1hPkl6SsRfFTZAuTnJsI1ZqW5KC-PY66Oz0D9_yM7bi6HOOenNKskgGGPoCReBzDLUKOI6Yp2OtZIgy1kKoMZsJJeO1ipBPmefcHRElV5rHOGNpArvOPslWcLi4gcrGQG4GUw5110LS97aj8gbXzkJhqW4dpORMBR8McjhSRXbBJldqnPG-nbPlbltk-3VtjDn3tn6QfZ1_e_IPvwHtpTvC</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Wang, Dajing</creator><creator>Liu, Quanli</creator><creator>Wang, Wei</creator><creator>Yu, Zichen</creator><creator>Liu, Xin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240607</creationdate><title>A Forward Obstacle Detection Approach for Trains Based on 4D Radar</title><author>Wang, Dajing ; Liu, Quanli ; Wang, Wei ; Yu, Zichen ; Liu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_105984103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4D Radar point clouds</topic><topic>Accuracy</topic><topic>intelligent train</topic><topic>Point cloud compression</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>Rails</topic><topic>railway obstacle detection</topic><topic>railway safety</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dajing</creatorcontrib><creatorcontrib>Liu, Quanli</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yu, Zichen</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Dajing</au><au>Liu, Quanli</au><au>Wang, Wei</au><au>Yu, Zichen</au><au>Liu, Xin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Forward Obstacle Detection Approach for Trains Based on 4D Radar</atitle><btitle>2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC)</btitle><stitle>YAC</stitle><date>2024-06-07</date><risdate>2024</risdate><spage>1426</spage><epage>1432</epage><pages>1426-1432</pages><eissn>2837-8601</eissn><eisbn>9798350379228</eisbn><abstract>With the expansion of urban scale, rail transport has become an indispensable component of the city's public transportation. Achieving intelligent assisted driving in rail transport can reduce incidents due to driver factors. Sensors enabling accurate perception of the surrounding environment are the prerequisite for intelligent assisted driving. 4D Radar generates point clouds that include both 3D position and velocity information. Especially, 4D Radar works well in bad weather conditions compared to Lidar and camera. This paper proposes an obstacle detection method based on 4D Radar in the train-travelling environment, which dynamically adjusts the obstacle detection range using DBSCAN. Moreover, the network is improved for the characteristic of sparse 4D Radar point cloud, and enhancing the detection capability of the network through the introduction of an attention module. Experimental results show that the method achieves satisfactory results in real scenarios and has great potential.</abstract><pub>IEEE</pub><doi>10.1109/YAC63405.2024.10598410</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2837-8601 |
ispartof | 2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2024, p.1426-1432 |
issn | 2837-8601 |
language | eng |
recordid | cdi_ieee_primary_10598410 |
source | IEEE Xplore All Conference Series |
subjects | 4D Radar point clouds Accuracy intelligent train Point cloud compression Radar Radar detection Radar tracking Rails railway obstacle detection railway safety Three-dimensional displays |
title | A Forward Obstacle Detection Approach for Trains Based on 4D Radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Forward%20Obstacle%20Detection%20Approach%20for%20Trains%20Based%20on%204D%20Radar&rft.btitle=2024%2039th%20Youth%20Academic%20Annual%20Conference%20of%20Chinese%20Association%20of%20Automation%20(YAC)&rft.au=Wang,%20Dajing&rft.date=2024-06-07&rft.spage=1426&rft.epage=1432&rft.pages=1426-1432&rft.eissn=2837-8601&rft_id=info:doi/10.1109/YAC63405.2024.10598410&rft.eisbn=9798350379228&rft_dat=%3Cieee_CHZPO%3E10598410%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_105984103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10598410&rfr_iscdi=true |