Loading…

COSTA: A Multi-Center TOF-MRA Dataset and a Style Self-Consistency Network for Cerebrovascular Segmentation

Time-of-flight magnetic resonance angiography (TOF-MRA) is the least invasive and ionizing radiation-free approach for cerebrovascular imaging, but variations in imaging artifacts across different clinical centers and imaging vendors result in inter-site and inter-vendor heterogeneity, making its ac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-12, Vol.43 (12), p.4442-4456
Main Authors: Mou, Lei, Lin, Jinghui, Zhao, Yifan, Liu, Yonghuai, Ma, Shaodong, Zhang, Jiong, Lv, Wenhao, Zhou, Tao, Liu, Jiang, Frangi, Alejandro F., Zhao, Yitian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-of-flight magnetic resonance angiography (TOF-MRA) is the least invasive and ionizing radiation-free approach for cerebrovascular imaging, but variations in imaging artifacts across different clinical centers and imaging vendors result in inter-site and inter-vendor heterogeneity, making its accurate and robust cerebrovascular segmentation challenging. Moreover, the limited availability and quality of annotated data pose further challenges for segmentation methods to generalize well to unseen datasets. In this paper, we construct the largest and most diverse TOF-MRA dataset (COSTA) from 8 individual imaging centers, with all the volumes manually annotated. Then we propose a novel network for cerebrovascular segmentation, namely CESAR, with the ability to tackle feature granularity and image style heterogeneity issues. Specifically, a coarse-to-fine architecture is implemented to refine cerebrovascular segmentation in an iterative manner. An automatic feature selection module is proposed to selectively fuse global long-range dependencies and local contextual information of cerebrovascular structures. A style self-consistency loss is then introduced to explicitly align diverse styles of TOF-MRA images to a standardized one. Extensive experimental results on the COSTA dataset demonstrate the effectiveness of our CESAR network against state-of-the-art methods. We have made 6 subsets of COSTA with the source code online available, in order to promote relevant research in the community.
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2024.3424976