Loading…

A Physics-Informed Deep Neural Network for Harmonization of CT Images

Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2024-12, Vol.71 (12), p.3494-3504
Main Authors: Zarei, Mojtaba, Sotoudeh-Paima, Saman, McCabe, Cindy, Abadi, Ehsan, Samei, Ehsan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3
container_end_page 3504
container_issue 12
container_start_page 3494
container_title IEEE transactions on biomedical engineering
container_volume 71
creator Zarei, Mojtaba
Sotoudeh-Paima, Saman
McCabe, Cindy
Abadi, Ehsan
Samei, Ehsan
description Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 \pm 16.4% to 95.8 \pm 1.7%, normalized mean squared error from 16.7 \pm 9.7% to 9.2 \pm 1.7%, and peak signal-to-noise ratio from 27.7 \pm 3.7 dB to 32.2 \pm 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 \pm 8.7% to 0.23 \pm 0.16%, Perc 15 from 43.4 \pm 45.4 HU to 20.0 \pm 7.5 HU, and Lung Mass from 0.3 \pm 0.3 g to 0.1 \pm 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrate
doi_str_mv 10.1109/TBME.2024.3428399
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10599826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10599826</ieee_id><sourcerecordid>3081771128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobk7_AEGk4IsvnbkkbZPHOacb-OthPoc2TbRzbWbSIvOvN2NTxKfjuM997_ggdAp4CIDF1fz6YTIkmLAhZYRTIfZQH5KExyShsI_6GAOPBRGsh468X4SWcZYeoh4VGEhGaR9NRtHz29pXysezxlhX6zK60XoVPerO5ctQ2k_r3qMwiqa5q21TfeVtZZvImmg8j2Z1_qr9MTow-dLrk10doJfbyXw8je-f7mbj0X2sCCVtzDGFtCx0uMyKJCsEYUoZbIoCk0ykDJclaGHAMKG4SFRhlMnyknNMSpWUBR2gy23uytmPTvtW1pVXernMG207LynmkGUAQcYAXfxDF7ZzTfhOUqAgMM_SLFCwpZSz3jtt5MpVde7WErDcOJYbx3LjWO4ch53zXXJXBF2_Gz9SA3C2BSqt9Z_ARAhOUvoN0Dd-lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131908767</pqid></control><display><type>article</type><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><source>IEEE Xplore All Conference Series</source><creator>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</creator><creatorcontrib>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</creatorcontrib><description><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></description><identifier>ISSN: 0018-9294</identifier><identifier>ISSN: 1558-2531</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2024.3428399</identifier><identifier>PMID: 39012733</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomarkers ; Biomedical imaging ; Computational modeling ; Computed tomography ; Datasets ; Deep learning ; Emphysema ; Harmonization ; Image acquisition ; Image quality ; Image reconstruction ; Lung diseases ; Lung nodules ; Lungs ; Medical imaging ; Neural networks ; Nodules ; Physics ; physics-informed deep learning model ; quantification ; Radiomics ; Signal to noise ratio ; Training ; Virtual networks</subject><ispartof>IEEE transactions on biomedical engineering, 2024-12, Vol.71 (12), p.3494-3504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</cites><orcidid>0000-0002-9123-5854 ; 0000-0001-7451-3309 ; 0000-0002-0997-7411 ; 0000-0003-0170-2541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10599826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10599826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Sotoudeh-Paima, Saman</creatorcontrib><creatorcontrib>McCabe, Cindy</creatorcontrib><creatorcontrib>Abadi, Ehsan</creatorcontrib><creatorcontrib>Samei, Ehsan</creatorcontrib><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></description><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Emphysema</subject><subject>Harmonization</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Lung diseases</subject><subject>Lung nodules</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>Physics</subject><subject>physics-informed deep learning model</subject><subject>quantification</subject><subject>Radiomics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Virtual networks</subject><issn>0018-9294</issn><issn>1558-2531</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQx4Mobk7_AEGk4IsvnbkkbZPHOacb-OthPoc2TbRzbWbSIvOvN2NTxKfjuM997_ggdAp4CIDF1fz6YTIkmLAhZYRTIfZQH5KExyShsI_6GAOPBRGsh468X4SWcZYeoh4VGEhGaR9NRtHz29pXysezxlhX6zK60XoVPerO5ctQ2k_r3qMwiqa5q21TfeVtZZvImmg8j2Z1_qr9MTow-dLrk10doJfbyXw8je-f7mbj0X2sCCVtzDGFtCx0uMyKJCsEYUoZbIoCk0ykDJclaGHAMKG4SFRhlMnyknNMSpWUBR2gy23uytmPTvtW1pVXernMG207LynmkGUAQcYAXfxDF7ZzTfhOUqAgMM_SLFCwpZSz3jtt5MpVde7WErDcOJYbx3LjWO4ch53zXXJXBF2_Gz9SA3C2BSqt9Z_ARAhOUvoN0Dd-lQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zarei, Mojtaba</creator><creator>Sotoudeh-Paima, Saman</creator><creator>McCabe, Cindy</creator><creator>Abadi, Ehsan</creator><creator>Samei, Ehsan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9123-5854</orcidid><orcidid>https://orcid.org/0000-0001-7451-3309</orcidid><orcidid>https://orcid.org/0000-0002-0997-7411</orcidid><orcidid>https://orcid.org/0000-0003-0170-2541</orcidid></search><sort><creationdate>20241201</creationdate><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><author>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Emphysema</topic><topic>Harmonization</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Lung diseases</topic><topic>Lung nodules</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>Physics</topic><topic>physics-informed deep learning model</topic><topic>quantification</topic><topic>Radiomics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Sotoudeh-Paima, Saman</creatorcontrib><creatorcontrib>McCabe, Cindy</creatorcontrib><creatorcontrib>Abadi, Ehsan</creatorcontrib><creatorcontrib>Samei, Ehsan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zarei, Mojtaba</au><au>Sotoudeh-Paima, Saman</au><au>McCabe, Cindy</au><au>Abadi, Ehsan</au><au>Samei, Ehsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-Informed Deep Neural Network for Harmonization of CT Images</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>71</volume><issue>12</issue><spage>3494</spage><epage>3504</epage><pages>3494-3504</pages><issn>0018-9294</issn><issn>1558-2531</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39012733</pmid><doi>10.1109/TBME.2024.3428399</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9123-5854</orcidid><orcidid>https://orcid.org/0000-0001-7451-3309</orcidid><orcidid>https://orcid.org/0000-0002-0997-7411</orcidid><orcidid>https://orcid.org/0000-0003-0170-2541</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2024-12, Vol.71 (12), p.3494-3504
issn 0018-9294
1558-2531
1558-2531
language eng
recordid cdi_ieee_primary_10599826
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Biomarkers
Biomedical imaging
Computational modeling
Computed tomography
Datasets
Deep learning
Emphysema
Harmonization
Image acquisition
Image quality
Image reconstruction
Lung diseases
Lung nodules
Lungs
Medical imaging
Neural networks
Nodules
Physics
physics-informed deep learning model
quantification
Radiomics
Signal to noise ratio
Training
Virtual networks
title A Physics-Informed Deep Neural Network for Harmonization of CT Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-Informed%20Deep%20Neural%20Network%20for%20Harmonization%20of%20CT%20Images&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Zarei,%20Mojtaba&rft.date=2024-12-01&rft.volume=71&rft.issue=12&rft.spage=3494&rft.epage=3504&rft.pages=3494-3504&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2024.3428399&rft_dat=%3Cproquest_CHZPO%3E3081771128%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131908767&rft_id=info:pmid/39012733&rft_ieee_id=10599826&rfr_iscdi=true