Loading…
A Physics-Informed Deep Neural Network for Harmonization of CT Images
Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2024-12, Vol.71 (12), p.3494-3504 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3 |
container_end_page | 3504 |
container_issue | 12 |
container_start_page | 3494 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 71 |
creator | Zarei, Mojtaba Sotoudeh-Paima, Saman McCabe, Cindy Abadi, Ehsan Samei, Ehsan |
description | Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 \pm 16.4% to 95.8 \pm 1.7%, normalized mean squared error from 16.7 \pm 9.7% to 9.2 \pm 1.7%, and peak signal-to-noise ratio from 27.7 \pm 3.7 dB to 32.2 \pm 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 \pm 8.7% to 0.23 \pm 0.16%, Perc 15 from 43.4 \pm 45.4 HU to 20.0 \pm 7.5 HU, and Lung Mass from 0.3 \pm 0.3 g to 0.1 \pm 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrate |
doi_str_mv | 10.1109/TBME.2024.3428399 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10599826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10599826</ieee_id><sourcerecordid>3081771128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobk7_AEGk4IsvnbkkbZPHOacb-OthPoc2TbRzbWbSIvOvN2NTxKfjuM997_ggdAp4CIDF1fz6YTIkmLAhZYRTIfZQH5KExyShsI_6GAOPBRGsh468X4SWcZYeoh4VGEhGaR9NRtHz29pXysezxlhX6zK60XoVPerO5ctQ2k_r3qMwiqa5q21TfeVtZZvImmg8j2Z1_qr9MTow-dLrk10doJfbyXw8je-f7mbj0X2sCCVtzDGFtCx0uMyKJCsEYUoZbIoCk0ykDJclaGHAMKG4SFRhlMnyknNMSpWUBR2gy23uytmPTvtW1pVXernMG207LynmkGUAQcYAXfxDF7ZzTfhOUqAgMM_SLFCwpZSz3jtt5MpVde7WErDcOJYbx3LjWO4ch53zXXJXBF2_Gz9SA3C2BSqt9Z_ARAhOUvoN0Dd-lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131908767</pqid></control><display><type>article</type><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><source>IEEE Xplore All Conference Series</source><creator>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</creator><creatorcontrib>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</creatorcontrib><description><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></description><identifier>ISSN: 0018-9294</identifier><identifier>ISSN: 1558-2531</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2024.3428399</identifier><identifier>PMID: 39012733</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomarkers ; Biomedical imaging ; Computational modeling ; Computed tomography ; Datasets ; Deep learning ; Emphysema ; Harmonization ; Image acquisition ; Image quality ; Image reconstruction ; Lung diseases ; Lung nodules ; Lungs ; Medical imaging ; Neural networks ; Nodules ; Physics ; physics-informed deep learning model ; quantification ; Radiomics ; Signal to noise ratio ; Training ; Virtual networks</subject><ispartof>IEEE transactions on biomedical engineering, 2024-12, Vol.71 (12), p.3494-3504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</cites><orcidid>0000-0002-9123-5854 ; 0000-0001-7451-3309 ; 0000-0002-0997-7411 ; 0000-0003-0170-2541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10599826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10599826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Sotoudeh-Paima, Saman</creatorcontrib><creatorcontrib>McCabe, Cindy</creatorcontrib><creatorcontrib>Abadi, Ehsan</creatorcontrib><creatorcontrib>Samei, Ehsan</creatorcontrib><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></description><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Emphysema</subject><subject>Harmonization</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Lung diseases</subject><subject>Lung nodules</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>Physics</subject><subject>physics-informed deep learning model</subject><subject>quantification</subject><subject>Radiomics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Virtual networks</subject><issn>0018-9294</issn><issn>1558-2531</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQx4Mobk7_AEGk4IsvnbkkbZPHOacb-OthPoc2TbRzbWbSIvOvN2NTxKfjuM997_ggdAp4CIDF1fz6YTIkmLAhZYRTIfZQH5KExyShsI_6GAOPBRGsh468X4SWcZYeoh4VGEhGaR9NRtHz29pXysezxlhX6zK60XoVPerO5ctQ2k_r3qMwiqa5q21TfeVtZZvImmg8j2Z1_qr9MTow-dLrk10doJfbyXw8je-f7mbj0X2sCCVtzDGFtCx0uMyKJCsEYUoZbIoCk0ykDJclaGHAMKG4SFRhlMnyknNMSpWUBR2gy23uytmPTvtW1pVXernMG207LynmkGUAQcYAXfxDF7ZzTfhOUqAgMM_SLFCwpZSz3jtt5MpVde7WErDcOJYbx3LjWO4ch53zXXJXBF2_Gz9SA3C2BSqt9Z_ARAhOUvoN0Dd-lQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zarei, Mojtaba</creator><creator>Sotoudeh-Paima, Saman</creator><creator>McCabe, Cindy</creator><creator>Abadi, Ehsan</creator><creator>Samei, Ehsan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9123-5854</orcidid><orcidid>https://orcid.org/0000-0001-7451-3309</orcidid><orcidid>https://orcid.org/0000-0002-0997-7411</orcidid><orcidid>https://orcid.org/0000-0003-0170-2541</orcidid></search><sort><creationdate>20241201</creationdate><title>A Physics-Informed Deep Neural Network for Harmonization of CT Images</title><author>Zarei, Mojtaba ; Sotoudeh-Paima, Saman ; McCabe, Cindy ; Abadi, Ehsan ; Samei, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Emphysema</topic><topic>Harmonization</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Lung diseases</topic><topic>Lung nodules</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>Physics</topic><topic>physics-informed deep learning model</topic><topic>quantification</topic><topic>Radiomics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Sotoudeh-Paima, Saman</creatorcontrib><creatorcontrib>McCabe, Cindy</creatorcontrib><creatorcontrib>Abadi, Ehsan</creatorcontrib><creatorcontrib>Samei, Ehsan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zarei, Mojtaba</au><au>Sotoudeh-Paima, Saman</au><au>McCabe, Cindy</au><au>Abadi, Ehsan</au><au>Samei, Ehsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-Informed Deep Neural Network for Harmonization of CT Images</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>71</volume><issue>12</issue><spage>3494</spage><epage>3504</epage><pages>3494-3504</pages><issn>0018-9294</issn><issn>1558-2531</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract><![CDATA[Objective : Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs). Methods : An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets. Results : On the virtual test set, the harmonizer improved the structural similarity index from 79.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 16.4% to 95.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, normalized mean squared error from 16.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 9.7% to 9.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.7%, and peak signal-to-noise ratio from 27.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7 dB to 32.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA −950 from 5.6 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 8.7% to 0.23 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.16%, Perc 15 from 43.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 45.4 HU to 20.0 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 7.5 HU, and Lung Mass from 0.3 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.3 g to 0.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%. Conclusion : The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging. Significance: The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39012733</pmid><doi>10.1109/TBME.2024.3428399</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9123-5854</orcidid><orcidid>https://orcid.org/0000-0001-7451-3309</orcidid><orcidid>https://orcid.org/0000-0002-0997-7411</orcidid><orcidid>https://orcid.org/0000-0003-0170-2541</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2024-12, Vol.71 (12), p.3494-3504 |
issn | 0018-9294 1558-2531 1558-2531 |
language | eng |
recordid | cdi_ieee_primary_10599826 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Biomarkers Biomedical imaging Computational modeling Computed tomography Datasets Deep learning Emphysema Harmonization Image acquisition Image quality Image reconstruction Lung diseases Lung nodules Lungs Medical imaging Neural networks Nodules Physics physics-informed deep learning model quantification Radiomics Signal to noise ratio Training Virtual networks |
title | A Physics-Informed Deep Neural Network for Harmonization of CT Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-Informed%20Deep%20Neural%20Network%20for%20Harmonization%20of%20CT%20Images&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Zarei,%20Mojtaba&rft.date=2024-12-01&rft.volume=71&rft.issue=12&rft.spage=3494&rft.epage=3504&rft.pages=3494-3504&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2024.3428399&rft_dat=%3Cproquest_CHZPO%3E3081771128%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-80316dbe7334b57b924ccf0fbb0279640dd1e9f1f49c895cbfcf7ad8802dc5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131908767&rft_id=info:pmid/39012733&rft_ieee_id=10599826&rfr_iscdi=true |