Loading…
Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN
Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a nove...
Saved in:
Published in: | IEEE access 2025, Vol.13, p.4381-4397 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3 |
container_end_page | 4397 |
container_issue | |
container_start_page | 4381 |
container_title | IEEE access |
container_volume | 13 |
creator | Zheng, Xiaoyang Luo, Xiaoheng Liu, Dezhi |
description | Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2024.3435674 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10614600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614600</ieee_id><doaj_id>oai_doaj_org_article_5c5cf29cd23745d7854bb713a821a0f6</doaj_id><sourcerecordid>3153910844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</originalsourceid><addsrcrecordid>eNpNkd1LwzAUxYsoOKZ_gT4UfO5MmpuPPuqYczA_cBs-hiy5nR2zmWmn-N-bWZHdl1wO53eScJLkgpIBpaS4vhkOR7PZICc5DBgwLiQcJb2ciiJjnInjg_00OW-aNYmjosRlL1nM3nxoszmG9_S1ql062yK69Dmgq2xb1av01jRR8HU6xRXWLmD6sNu01Zf5xA226TyYuil9xE2kxy-LbPT4eJaclGbT4Pnf2U8Wd6P58D6bPo0nw5tpZikvIGNIwTJLGEpnhC1ACGlL4KYEpUpXQPwTwWXOHQipgCojmTIWrMmVk9yyfjLpcp03a70N1bsJ39qbSv8KPqy0CW1lN6i55bbMC-tyJoE7qTgsl5Iyo3JqSCli1lWXtQ3-Y4dNq9d-F-r4fM0oZwUlCiC6WOeywTdNwPL_Vkr0vg7d1aH3dei_OiJ12VEVIh4QgoIghP0A3fuEAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153910844</pqid></control><display><type>article</type><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><source>IEEE Open Access Journals</source><creator>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</creator><creatorcontrib>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</creatorcontrib><description>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3435674</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Autoregressive processes ; discrete wavelet transform ; Elman neural network ; empirical mode decomposition ; gated recurrent unit ; Legendre multiwavelet transform ; Neural networks ; Prediction algorithms ; Predictions ; Predictive models ; Stability ; Transforms ; Wind power ; Wind speed</subject><ispartof>IEEE access, 2025, Vol.13, p.4381-4397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</cites><orcidid>0000-0002-1719-4169 ; 0009-0009-2274-9139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Luo, Xiaoheng</creatorcontrib><creatorcontrib>Liu, Dezhi</creatorcontrib><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</description><subject>Accuracy</subject><subject>Autoregressive processes</subject><subject>discrete wavelet transform</subject><subject>Elman neural network</subject><subject>empirical mode decomposition</subject><subject>gated recurrent unit</subject><subject>Legendre multiwavelet transform</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Stability</subject><subject>Transforms</subject><subject>Wind power</subject><subject>Wind speed</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1LwzAUxYsoOKZ_gT4UfO5MmpuPPuqYczA_cBs-hiy5nR2zmWmn-N-bWZHdl1wO53eScJLkgpIBpaS4vhkOR7PZICc5DBgwLiQcJb2ciiJjnInjg_00OW-aNYmjosRlL1nM3nxoszmG9_S1ql062yK69Dmgq2xb1av01jRR8HU6xRXWLmD6sNu01Zf5xA226TyYuil9xE2kxy-LbPT4eJaclGbT4Pnf2U8Wd6P58D6bPo0nw5tpZikvIGNIwTJLGEpnhC1ACGlL4KYEpUpXQPwTwWXOHQipgCojmTIWrMmVk9yyfjLpcp03a70N1bsJ39qbSv8KPqy0CW1lN6i55bbMC-tyJoE7qTgsl5Iyo3JqSCli1lWXtQ3-Y4dNq9d-F-r4fM0oZwUlCiC6WOeywTdNwPL_Vkr0vg7d1aH3dei_OiJ12VEVIh4QgoIghP0A3fuEAw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zheng, Xiaoyang</creator><creator>Luo, Xiaoheng</creator><creator>Liu, Dezhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0009-0009-2274-9139</orcidid></search><sort><creationdate>2025</creationdate><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><author>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Autoregressive processes</topic><topic>discrete wavelet transform</topic><topic>Elman neural network</topic><topic>empirical mode decomposition</topic><topic>gated recurrent unit</topic><topic>Legendre multiwavelet transform</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Stability</topic><topic>Transforms</topic><topic>Wind power</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Luo, Xiaoheng</creatorcontrib><creatorcontrib>Liu, Dezhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoyang</au><au>Luo, Xiaoheng</au><au>Liu, Dezhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>4381</spage><epage>4397</epage><pages>4381-4397</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3435674</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0009-0009-2274-9139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.4381-4397 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10614600 |
source | IEEE Open Access Journals |
subjects | Accuracy Autoregressive processes discrete wavelet transform Elman neural network empirical mode decomposition gated recurrent unit Legendre multiwavelet transform Neural networks Prediction algorithms Predictions Predictive models Stability Transforms Wind power Wind speed |
title | Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Wind%20Speed%20Predicting%20Based%20on%20Legendre%20Multiwavelet%20Transform%20and%20GRU-ENN&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Xiaoyang&rft.date=2025&rft.volume=13&rft.spage=4381&rft.epage=4397&rft.pages=4381-4397&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3435674&rft_dat=%3Cproquest_ieee_%3E3153910844%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153910844&rft_id=info:pmid/&rft_ieee_id=10614600&rfr_iscdi=true |