Loading…

Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN

Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a nove...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2025, Vol.13, p.4381-4397
Main Authors: Zheng, Xiaoyang, Luo, Xiaoheng, Liu, Dezhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3
container_end_page 4397
container_issue
container_start_page 4381
container_title IEEE access
container_volume 13
creator Zheng, Xiaoyang
Luo, Xiaoheng
Liu, Dezhi
description Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2024.3435674
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10614600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614600</ieee_id><doaj_id>oai_doaj_org_article_5c5cf29cd23745d7854bb713a821a0f6</doaj_id><sourcerecordid>3153910844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</originalsourceid><addsrcrecordid>eNpNkd1LwzAUxYsoOKZ_gT4UfO5MmpuPPuqYczA_cBs-hiy5nR2zmWmn-N-bWZHdl1wO53eScJLkgpIBpaS4vhkOR7PZICc5DBgwLiQcJb2ciiJjnInjg_00OW-aNYmjosRlL1nM3nxoszmG9_S1ql062yK69Dmgq2xb1av01jRR8HU6xRXWLmD6sNu01Zf5xA226TyYuil9xE2kxy-LbPT4eJaclGbT4Pnf2U8Wd6P58D6bPo0nw5tpZikvIGNIwTJLGEpnhC1ACGlL4KYEpUpXQPwTwWXOHQipgCojmTIWrMmVk9yyfjLpcp03a70N1bsJ39qbSv8KPqy0CW1lN6i55bbMC-tyJoE7qTgsl5Iyo3JqSCli1lWXtQ3-Y4dNq9d-F-r4fM0oZwUlCiC6WOeywTdNwPL_Vkr0vg7d1aH3dei_OiJ12VEVIh4QgoIghP0A3fuEAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153910844</pqid></control><display><type>article</type><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><source>IEEE Open Access Journals</source><creator>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</creator><creatorcontrib>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</creatorcontrib><description>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3435674</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Autoregressive processes ; discrete wavelet transform ; Elman neural network ; empirical mode decomposition ; gated recurrent unit ; Legendre multiwavelet transform ; Neural networks ; Prediction algorithms ; Predictions ; Predictive models ; Stability ; Transforms ; Wind power ; Wind speed</subject><ispartof>IEEE access, 2025, Vol.13, p.4381-4397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</cites><orcidid>0000-0002-1719-4169 ; 0009-0009-2274-9139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Luo, Xiaoheng</creatorcontrib><creatorcontrib>Liu, Dezhi</creatorcontrib><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</description><subject>Accuracy</subject><subject>Autoregressive processes</subject><subject>discrete wavelet transform</subject><subject>Elman neural network</subject><subject>empirical mode decomposition</subject><subject>gated recurrent unit</subject><subject>Legendre multiwavelet transform</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Stability</subject><subject>Transforms</subject><subject>Wind power</subject><subject>Wind speed</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1LwzAUxYsoOKZ_gT4UfO5MmpuPPuqYczA_cBs-hiy5nR2zmWmn-N-bWZHdl1wO53eScJLkgpIBpaS4vhkOR7PZICc5DBgwLiQcJb2ciiJjnInjg_00OW-aNYmjosRlL1nM3nxoszmG9_S1ql062yK69Dmgq2xb1av01jRR8HU6xRXWLmD6sNu01Zf5xA226TyYuil9xE2kxy-LbPT4eJaclGbT4Pnf2U8Wd6P58D6bPo0nw5tpZikvIGNIwTJLGEpnhC1ACGlL4KYEpUpXQPwTwWXOHQipgCojmTIWrMmVk9yyfjLpcp03a70N1bsJ39qbSv8KPqy0CW1lN6i55bbMC-tyJoE7qTgsl5Iyo3JqSCli1lWXtQ3-Y4dNq9d-F-r4fM0oZwUlCiC6WOeywTdNwPL_Vkr0vg7d1aH3dei_OiJ12VEVIh4QgoIghP0A3fuEAw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zheng, Xiaoyang</creator><creator>Luo, Xiaoheng</creator><creator>Liu, Dezhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0009-0009-2274-9139</orcidid></search><sort><creationdate>2025</creationdate><title>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</title><author>Zheng, Xiaoyang ; Luo, Xiaoheng ; Liu, Dezhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Autoregressive processes</topic><topic>discrete wavelet transform</topic><topic>Elman neural network</topic><topic>empirical mode decomposition</topic><topic>gated recurrent unit</topic><topic>Legendre multiwavelet transform</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Stability</topic><topic>Transforms</topic><topic>Wind power</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Luo, Xiaoheng</creatorcontrib><creatorcontrib>Liu, Dezhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoyang</au><au>Luo, Xiaoheng</au><au>Liu, Dezhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>4381</spage><epage>4397</epage><pages>4381-4397</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wind energy has become a vital component of the power system. Due to the stochastic and intermittent characteristics of wind speed, thus enhancing accuracy and stability in short-term wind speed prediction is imperative and important for effectively harnessing wind energy. This paper proposes a novel hybrid model combing Legendre multiwavelet transform, Gated recurrent unit and Elman neural network (LMWT-GRU-ENN) for short-term wind speed prediction. More precisely, the rich properties, especial various regularities of LMW bases are utilized to effectively match the non-linearity and larger non-stationary features of short-term wind speed corresponding to multi-resolution level and multi-wavelet bases. GRU model is used to predict the low frequency components, and ENN model is implemented to predict the high frequency components obtained by LMWT, which can effectively improve the prediction performance by thoroughly making use of their advantages. Finally, massive experiments are conducted on two short-term wind speed datasets, and the experimental results demonstrate the proposed method attains the excellent performance of in both accuracy and stability compared with other state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3435674</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0009-0009-2274-9139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.4381-4397
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10614600
source IEEE Open Access Journals
subjects Accuracy
Autoregressive processes
discrete wavelet transform
Elman neural network
empirical mode decomposition
gated recurrent unit
Legendre multiwavelet transform
Neural networks
Prediction algorithms
Predictions
Predictive models
Stability
Transforms
Wind power
Wind speed
title Short-Term Wind Speed Predicting Based on Legendre Multiwavelet Transform and GRU-ENN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Wind%20Speed%20Predicting%20Based%20on%20Legendre%20Multiwavelet%20Transform%20and%20GRU-ENN&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Xiaoyang&rft.date=2025&rft.volume=13&rft.spage=4381&rft.epage=4397&rft.pages=4381-4397&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3435674&rft_dat=%3Cproquest_ieee_%3E3153910844%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1594-3e14c3c03e7da6c94667cf45af488fd942020eb25d4678418a738ac4ca28d75c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153910844&rft_id=info:pmid/&rft_ieee_id=10614600&rfr_iscdi=true