Loading…
XAI-Guided Optimization of a Multilayer Network Regression Model
The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are develope...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 774 |
container_issue | |
container_start_page | 769 |
container_title | |
container_volume | |
creator | Duszynska, Katarzyna Polski, Pawel Wlosek, Micha Knapinska, Aleksandra Lechowicz, Piotr Walkowiak, Krzysztof |
description | The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality. |
doi_str_mv | 10.23919/IFIPNetworking62109.2024.10619785 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10619785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10619785</ieee_id><sourcerecordid>10619785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763</originalsourceid><addsrcrecordid>eNo1j81OwkAURkcTExF5AxddmxTn3vnfSYhgExCjLtiRKXOHjBZK2hKCT2-MuPo2J-fkY-we-BCFA_dQTIrXF-qOdfOVdhuNwN0QOcohcA3OWHXBboTjAozWYnnJemA15IjWXrNB235yzgVyiVL12ONyVOTTQwoUssW-S9v07btU77I6Zj6bH6ouVf5ETXYOZm-0aahtf5F5Hai6ZVfRVy0Nzttn75Onj_FzPltMi_FolidnKCclTBlLDhZVXJeAzkRwVnGNBKWVQJwkBFLRB3Q6klOS1kKjpBCMFn1292dNRLTaN2nrm9Pq_6_4AWMsTqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><source>IEEE Xplore All Conference Series</source><creator>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</creator><creatorcontrib>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</creatorcontrib><description>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</description><identifier>EISSN: 1861-2288</identifier><identifier>EISBN: 390317663X</identifier><identifier>EISBN: 9783903176638</identifier><identifier>DOI: 10.23919/IFIPNetworking62109.2024.10619785</identifier><language>eng</language><publisher>IFIP</publisher><subject>Explainable AI ; explainable artificial intelligence ; machine learning ; Measurement ; multilayer network ; Nonhomogeneous media ; Optimization methods ; Predictive models ; resource allocation ; Runtime ; Uncertainty</subject><ispartof>2024 IFIP Networking Conference (IFIP Networking), 2024, p.769-774</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10619785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10619785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duszynska, Katarzyna</creatorcontrib><creatorcontrib>Polski, Pawel</creatorcontrib><creatorcontrib>Wlosek, Micha</creatorcontrib><creatorcontrib>Knapinska, Aleksandra</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Walkowiak, Krzysztof</creatorcontrib><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><title>2024 IFIP Networking Conference (IFIP Networking)</title><addtitle>IFIPNETWORKING</addtitle><description>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</description><subject>Explainable AI</subject><subject>explainable artificial intelligence</subject><subject>machine learning</subject><subject>Measurement</subject><subject>multilayer network</subject><subject>Nonhomogeneous media</subject><subject>Optimization methods</subject><subject>Predictive models</subject><subject>resource allocation</subject><subject>Runtime</subject><subject>Uncertainty</subject><issn>1861-2288</issn><isbn>390317663X</isbn><isbn>9783903176638</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81OwkAURkcTExF5AxddmxTn3vnfSYhgExCjLtiRKXOHjBZK2hKCT2-MuPo2J-fkY-we-BCFA_dQTIrXF-qOdfOVdhuNwN0QOcohcA3OWHXBboTjAozWYnnJemA15IjWXrNB235yzgVyiVL12ONyVOTTQwoUssW-S9v07btU77I6Zj6bH6ouVf5ETXYOZm-0aahtf5F5Hai6ZVfRVy0Nzttn75Onj_FzPltMi_FolidnKCclTBlLDhZVXJeAzkRwVnGNBKWVQJwkBFLRB3Q6klOS1kKjpBCMFn1292dNRLTaN2nrm9Pq_6_4AWMsTqY</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Duszynska, Katarzyna</creator><creator>Polski, Pawel</creator><creator>Wlosek, Micha</creator><creator>Knapinska, Aleksandra</creator><creator>Lechowicz, Piotr</creator><creator>Walkowiak, Krzysztof</creator><general>IFIP</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240603</creationdate><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><author>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explainable AI</topic><topic>explainable artificial intelligence</topic><topic>machine learning</topic><topic>Measurement</topic><topic>multilayer network</topic><topic>Nonhomogeneous media</topic><topic>Optimization methods</topic><topic>Predictive models</topic><topic>resource allocation</topic><topic>Runtime</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Duszynska, Katarzyna</creatorcontrib><creatorcontrib>Polski, Pawel</creatorcontrib><creatorcontrib>Wlosek, Micha</creatorcontrib><creatorcontrib>Knapinska, Aleksandra</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Walkowiak, Krzysztof</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duszynska, Katarzyna</au><au>Polski, Pawel</au><au>Wlosek, Micha</au><au>Knapinska, Aleksandra</au><au>Lechowicz, Piotr</au><au>Walkowiak, Krzysztof</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>XAI-Guided Optimization of a Multilayer Network Regression Model</atitle><btitle>2024 IFIP Networking Conference (IFIP Networking)</btitle><stitle>IFIPNETWORKING</stitle><date>2024-06-03</date><risdate>2024</risdate><spage>769</spage><epage>774</epage><pages>769-774</pages><eissn>1861-2288</eissn><eisbn>390317663X</eisbn><eisbn>9783903176638</eisbn><abstract>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</abstract><pub>IFIP</pub><doi>10.23919/IFIPNetworking62109.2024.10619785</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1861-2288 |
ispartof | 2024 IFIP Networking Conference (IFIP Networking), 2024, p.769-774 |
issn | 1861-2288 |
language | eng |
recordid | cdi_ieee_primary_10619785 |
source | IEEE Xplore All Conference Series |
subjects | Explainable AI explainable artificial intelligence machine learning Measurement multilayer network Nonhomogeneous media Optimization methods Predictive models resource allocation Runtime Uncertainty |
title | XAI-Guided Optimization of a Multilayer Network Regression Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=XAI-Guided%20Optimization%20of%20a%20Multilayer%20Network%20Regression%20Model&rft.btitle=2024%20IFIP%20Networking%20Conference%20(IFIP%20Networking)&rft.au=Duszynska,%20Katarzyna&rft.date=2024-06-03&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.eissn=1861-2288&rft_id=info:doi/10.23919/IFIPNetworking62109.2024.10619785&rft.eisbn=390317663X&rft.eisbn_list=9783903176638&rft_dat=%3Cieee_CHZPO%3E10619785%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10619785&rfr_iscdi=true |