Loading…

XAI-Guided Optimization of a Multilayer Network Regression Model

The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are develope...

Full description

Saved in:
Bibliographic Details
Main Authors: Duszynska, Katarzyna, Polski, Pawel, Wlosek, Micha, Knapinska, Aleksandra, Lechowicz, Piotr, Walkowiak, Krzysztof
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 774
container_issue
container_start_page 769
container_title
container_volume
creator Duszynska, Katarzyna
Polski, Pawel
Wlosek, Micha
Knapinska, Aleksandra
Lechowicz, Piotr
Walkowiak, Krzysztof
description The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.
doi_str_mv 10.23919/IFIPNetworking62109.2024.10619785
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10619785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10619785</ieee_id><sourcerecordid>10619785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763</originalsourceid><addsrcrecordid>eNo1j81OwkAURkcTExF5AxddmxTn3vnfSYhgExCjLtiRKXOHjBZK2hKCT2-MuPo2J-fkY-we-BCFA_dQTIrXF-qOdfOVdhuNwN0QOcohcA3OWHXBboTjAozWYnnJemA15IjWXrNB235yzgVyiVL12ONyVOTTQwoUssW-S9v07btU77I6Zj6bH6ouVf5ETXYOZm-0aahtf5F5Hai6ZVfRVy0Nzttn75Onj_FzPltMi_FolidnKCclTBlLDhZVXJeAzkRwVnGNBKWVQJwkBFLRB3Q6klOS1kKjpBCMFn1292dNRLTaN2nrm9Pq_6_4AWMsTqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><source>IEEE Xplore All Conference Series</source><creator>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</creator><creatorcontrib>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</creatorcontrib><description>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</description><identifier>EISSN: 1861-2288</identifier><identifier>EISBN: 390317663X</identifier><identifier>EISBN: 9783903176638</identifier><identifier>DOI: 10.23919/IFIPNetworking62109.2024.10619785</identifier><language>eng</language><publisher>IFIP</publisher><subject>Explainable AI ; explainable artificial intelligence ; machine learning ; Measurement ; multilayer network ; Nonhomogeneous media ; Optimization methods ; Predictive models ; resource allocation ; Runtime ; Uncertainty</subject><ispartof>2024 IFIP Networking Conference (IFIP Networking), 2024, p.769-774</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10619785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10619785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duszynska, Katarzyna</creatorcontrib><creatorcontrib>Polski, Pawel</creatorcontrib><creatorcontrib>Wlosek, Micha</creatorcontrib><creatorcontrib>Knapinska, Aleksandra</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Walkowiak, Krzysztof</creatorcontrib><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><title>2024 IFIP Networking Conference (IFIP Networking)</title><addtitle>IFIPNETWORKING</addtitle><description>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</description><subject>Explainable AI</subject><subject>explainable artificial intelligence</subject><subject>machine learning</subject><subject>Measurement</subject><subject>multilayer network</subject><subject>Nonhomogeneous media</subject><subject>Optimization methods</subject><subject>Predictive models</subject><subject>resource allocation</subject><subject>Runtime</subject><subject>Uncertainty</subject><issn>1861-2288</issn><isbn>390317663X</isbn><isbn>9783903176638</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81OwkAURkcTExF5AxddmxTn3vnfSYhgExCjLtiRKXOHjBZK2hKCT2-MuPo2J-fkY-we-BCFA_dQTIrXF-qOdfOVdhuNwN0QOcohcA3OWHXBboTjAozWYnnJemA15IjWXrNB235yzgVyiVL12ONyVOTTQwoUssW-S9v07btU77I6Zj6bH6ouVf5ETXYOZm-0aahtf5F5Hai6ZVfRVy0Nzttn75Onj_FzPltMi_FolidnKCclTBlLDhZVXJeAzkRwVnGNBKWVQJwkBFLRB3Q6klOS1kKjpBCMFn1292dNRLTaN2nrm9Pq_6_4AWMsTqY</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Duszynska, Katarzyna</creator><creator>Polski, Pawel</creator><creator>Wlosek, Micha</creator><creator>Knapinska, Aleksandra</creator><creator>Lechowicz, Piotr</creator><creator>Walkowiak, Krzysztof</creator><general>IFIP</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240603</creationdate><title>XAI-Guided Optimization of a Multilayer Network Regression Model</title><author>Duszynska, Katarzyna ; Polski, Pawel ; Wlosek, Micha ; Knapinska, Aleksandra ; Lechowicz, Piotr ; Walkowiak, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explainable AI</topic><topic>explainable artificial intelligence</topic><topic>machine learning</topic><topic>Measurement</topic><topic>multilayer network</topic><topic>Nonhomogeneous media</topic><topic>Optimization methods</topic><topic>Predictive models</topic><topic>resource allocation</topic><topic>Runtime</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Duszynska, Katarzyna</creatorcontrib><creatorcontrib>Polski, Pawel</creatorcontrib><creatorcontrib>Wlosek, Micha</creatorcontrib><creatorcontrib>Knapinska, Aleksandra</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Walkowiak, Krzysztof</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duszynska, Katarzyna</au><au>Polski, Pawel</au><au>Wlosek, Micha</au><au>Knapinska, Aleksandra</au><au>Lechowicz, Piotr</au><au>Walkowiak, Krzysztof</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>XAI-Guided Optimization of a Multilayer Network Regression Model</atitle><btitle>2024 IFIP Networking Conference (IFIP Networking)</btitle><stitle>IFIPNETWORKING</stitle><date>2024-06-03</date><risdate>2024</risdate><spage>769</spage><epage>774</epage><pages>769-774</pages><eissn>1861-2288</eissn><eisbn>390317663X</eisbn><eisbn>9783903176638</eisbn><abstract>The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.</abstract><pub>IFIP</pub><doi>10.23919/IFIPNetworking62109.2024.10619785</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1861-2288
ispartof 2024 IFIP Networking Conference (IFIP Networking), 2024, p.769-774
issn 1861-2288
language eng
recordid cdi_ieee_primary_10619785
source IEEE Xplore All Conference Series
subjects Explainable AI
explainable artificial intelligence
machine learning
Measurement
multilayer network
Nonhomogeneous media
Optimization methods
Predictive models
resource allocation
Runtime
Uncertainty
title XAI-Guided Optimization of a Multilayer Network Regression Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=XAI-Guided%20Optimization%20of%20a%20Multilayer%20Network%20Regression%20Model&rft.btitle=2024%20IFIP%20Networking%20Conference%20(IFIP%20Networking)&rft.au=Duszynska,%20Katarzyna&rft.date=2024-06-03&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.eissn=1861-2288&rft_id=info:doi/10.23919/IFIPNetworking62109.2024.10619785&rft.eisbn=390317663X&rft.eisbn_list=9783903176638&rft_dat=%3Cieee_CHZPO%3E10619785%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i97e-e537bfb01825fcb1297f1985062e1b841e0e41de5fad296fe954ec3624edd763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10619785&rfr_iscdi=true