Loading…
Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System
Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) ex...
Saved in:
Published in: | IEEE internet of things journal 2024-09, Vol.11 (18), p.29235-29251 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3 |
container_end_page | 29251 |
container_issue | 18 |
container_start_page | 29235 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Li, Mao Liu, Wei Lei, Jing Zhu, Jinkun An, Kang Chatzinotas, Symeon |
description | Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms. |
doi_str_mv | 10.1109/JIOT.2024.3433406 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10620435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10620435</ieee_id><sourcerecordid>3098881792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5ASYemngG-727R8UvDIZEIB5rd9uSEreLbTHy7y2BA6d5M_O8M5MXgGuMRhij6u5tMluMCCJsRBmlDIkz0COUFEMmBDk_0ZdgEOMaIZRtHFeiB74mPplVUMloOFs8z-Gn-jW2Cy18NNGtPHxQMY86D5feWZflu0rB_cHMwLfO-QTHXdtuvWtUchlTXsMPpVWA811Mpr0CF1Z9RzM41j5YPj8txq_D6exlMr6fDhtciJS_U5VVtUBaM1ZrTuumyZ0KcdIoym3JGCKI21qwApWaFkpXNeVcY2QahS3tg9vD3k3ofrYmJrnutsHnk5KiqixLXFQkU_hANaGLMRgrN8G1KuwkRnKfpdxnKfdZymOW2XNz8DhjzAkvCGKU03-xW2-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098881792</pqid></control><display><type>article</type><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><source>IEEE Xplore (Online service)</source><creator>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</creator><creatorcontrib>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</creatorcontrib><description>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3433406</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Banded structure ; Coarse and fine estimation ; Communications systems ; Complexity ; Complexity theory ; discrete fractional Fourier transform (DFrFT) ; Doppler effect ; Error analysis ; Estimation ; Fourier transforms ; fractional LU-ZF/MMSE equalization ; OFDM ; Order parameters ; Orthogonal Frequency Division Multiplexing ; Parameter estimation ; Performance degradation ; Radar ; Radar equipment ; sensing parameter estimation ; Sensors ; UM-OTFS waveform ; Waveforms</subject><ispartof>IEEE internet of things journal, 2024-09, Vol.11 (18), p.29235-29251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</cites><orcidid>0000-0002-2668-6368 ; 0000-0001-5122-0001 ; 0000-0001-5180-6563 ; 0000-0003-4720-0635 ; 0000-0002-5838-5826 ; 0000-0002-3645-7454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10620435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Jing</creatorcontrib><creatorcontrib>Zhu, Jinkun</creatorcontrib><creatorcontrib>An, Kang</creatorcontrib><creatorcontrib>Chatzinotas, Symeon</creatorcontrib><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</description><subject>Algorithms</subject><subject>Banded structure</subject><subject>Coarse and fine estimation</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>discrete fractional Fourier transform (DFrFT)</subject><subject>Doppler effect</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>fractional LU-ZF/MMSE equalization</subject><subject>OFDM</subject><subject>Order parameters</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>sensing parameter estimation</subject><subject>Sensors</subject><subject>UM-OTFS waveform</subject><subject>Waveforms</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiQT5ASYemngG-727R8UvDIZEIB5rd9uSEreLbTHy7y2BA6d5M_O8M5MXgGuMRhij6u5tMluMCCJsRBmlDIkz0COUFEMmBDk_0ZdgEOMaIZRtHFeiB74mPplVUMloOFs8z-Gn-jW2Cy18NNGtPHxQMY86D5feWZflu0rB_cHMwLfO-QTHXdtuvWtUchlTXsMPpVWA811Mpr0CF1Z9RzM41j5YPj8txq_D6exlMr6fDhtciJS_U5VVtUBaM1ZrTuumyZ0KcdIoym3JGCKI21qwApWaFkpXNeVcY2QahS3tg9vD3k3ofrYmJrnutsHnk5KiqixLXFQkU_hANaGLMRgrN8G1KuwkRnKfpdxnKfdZymOW2XNz8DhjzAkvCGKU03-xW2-h</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Li, Mao</creator><creator>Liu, Wei</creator><creator>Lei, Jing</creator><creator>Zhu, Jinkun</creator><creator>An, Kang</creator><creator>Chatzinotas, Symeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2668-6368</orcidid><orcidid>https://orcid.org/0000-0001-5122-0001</orcidid><orcidid>https://orcid.org/0000-0001-5180-6563</orcidid><orcidid>https://orcid.org/0000-0003-4720-0635</orcidid><orcidid>https://orcid.org/0000-0002-5838-5826</orcidid><orcidid>https://orcid.org/0000-0002-3645-7454</orcidid></search><sort><creationdate>20240915</creationdate><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><author>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Banded structure</topic><topic>Coarse and fine estimation</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>discrete fractional Fourier transform (DFrFT)</topic><topic>Doppler effect</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>fractional LU-ZF/MMSE equalization</topic><topic>OFDM</topic><topic>Order parameters</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>sensing parameter estimation</topic><topic>Sensors</topic><topic>UM-OTFS waveform</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Jing</creatorcontrib><creatorcontrib>Zhu, Jinkun</creatorcontrib><creatorcontrib>An, Kang</creatorcontrib><creatorcontrib>Chatzinotas, Symeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mao</au><au>Liu, Wei</au><au>Lei, Jing</au><au>Zhu, Jinkun</au><au>An, Kang</au><au>Chatzinotas, Symeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-09-15</date><risdate>2024</risdate><volume>11</volume><issue>18</issue><spage>29235</spage><epage>29251</epage><pages>29235-29251</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3433406</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2668-6368</orcidid><orcidid>https://orcid.org/0000-0001-5122-0001</orcidid><orcidid>https://orcid.org/0000-0001-5180-6563</orcidid><orcidid>https://orcid.org/0000-0003-4720-0635</orcidid><orcidid>https://orcid.org/0000-0002-5838-5826</orcidid><orcidid>https://orcid.org/0000-0002-3645-7454</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-09, Vol.11 (18), p.29235-29251 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10620435 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Banded structure Coarse and fine estimation Communications systems Complexity Complexity theory discrete fractional Fourier transform (DFrFT) Doppler effect Error analysis Estimation Fourier transforms fractional LU-ZF/MMSE equalization OFDM Order parameters Orthogonal Frequency Division Multiplexing Parameter estimation Performance degradation Radar Radar equipment sensing parameter estimation Sensors UM-OTFS waveform Waveforms |
title | Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20OTFS%20Waveform%20Design%20Based%20on%20Unified%20Matrix%20for%20Joint%20Communication%20and%20Radar%20System&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Mao&rft.date=2024-09-15&rft.volume=11&rft.issue=18&rft.spage=29235&rft.epage=29251&rft.pages=29235-29251&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3433406&rft_dat=%3Cproquest_ieee_%3E3098881792%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098881792&rft_id=info:pmid/&rft_ieee_id=10620435&rfr_iscdi=true |