Loading…

Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System

Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) ex...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2024-09, Vol.11 (18), p.29235-29251
Main Authors: Li, Mao, Liu, Wei, Lei, Jing, Zhu, Jinkun, An, Kang, Chatzinotas, Symeon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3
container_end_page 29251
container_issue 18
container_start_page 29235
container_title IEEE internet of things journal
container_volume 11
creator Li, Mao
Liu, Wei
Lei, Jing
Zhu, Jinkun
An, Kang
Chatzinotas, Symeon
description Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.
doi_str_mv 10.1109/JIOT.2024.3433406
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10620435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10620435</ieee_id><sourcerecordid>3098881792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5ASYemngG-727R8UvDIZEIB5rd9uSEreLbTHy7y2BA6d5M_O8M5MXgGuMRhij6u5tMluMCCJsRBmlDIkz0COUFEMmBDk_0ZdgEOMaIZRtHFeiB74mPplVUMloOFs8z-Gn-jW2Cy18NNGtPHxQMY86D5feWZflu0rB_cHMwLfO-QTHXdtuvWtUchlTXsMPpVWA811Mpr0CF1Z9RzM41j5YPj8txq_D6exlMr6fDhtciJS_U5VVtUBaM1ZrTuumyZ0KcdIoym3JGCKI21qwApWaFkpXNeVcY2QahS3tg9vD3k3ofrYmJrnutsHnk5KiqixLXFQkU_hANaGLMRgrN8G1KuwkRnKfpdxnKfdZymOW2XNz8DhjzAkvCGKU03-xW2-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098881792</pqid></control><display><type>article</type><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><source>IEEE Xplore (Online service)</source><creator>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</creator><creatorcontrib>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</creatorcontrib><description>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3433406</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Banded structure ; Coarse and fine estimation ; Communications systems ; Complexity ; Complexity theory ; discrete fractional Fourier transform (DFrFT) ; Doppler effect ; Error analysis ; Estimation ; Fourier transforms ; fractional LU-ZF/MMSE equalization ; OFDM ; Order parameters ; Orthogonal Frequency Division Multiplexing ; Parameter estimation ; Performance degradation ; Radar ; Radar equipment ; sensing parameter estimation ; Sensors ; UM-OTFS waveform ; Waveforms</subject><ispartof>IEEE internet of things journal, 2024-09, Vol.11 (18), p.29235-29251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</cites><orcidid>0000-0002-2668-6368 ; 0000-0001-5122-0001 ; 0000-0001-5180-6563 ; 0000-0003-4720-0635 ; 0000-0002-5838-5826 ; 0000-0002-3645-7454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10620435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Jing</creatorcontrib><creatorcontrib>Zhu, Jinkun</creatorcontrib><creatorcontrib>An, Kang</creatorcontrib><creatorcontrib>Chatzinotas, Symeon</creatorcontrib><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</description><subject>Algorithms</subject><subject>Banded structure</subject><subject>Coarse and fine estimation</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>discrete fractional Fourier transform (DFrFT)</subject><subject>Doppler effect</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>fractional LU-ZF/MMSE equalization</subject><subject>OFDM</subject><subject>Order parameters</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>sensing parameter estimation</subject><subject>Sensors</subject><subject>UM-OTFS waveform</subject><subject>Waveforms</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiQT5ASYemngG-727R8UvDIZEIB5rd9uSEreLbTHy7y2BA6d5M_O8M5MXgGuMRhij6u5tMluMCCJsRBmlDIkz0COUFEMmBDk_0ZdgEOMaIZRtHFeiB74mPplVUMloOFs8z-Gn-jW2Cy18NNGtPHxQMY86D5feWZflu0rB_cHMwLfO-QTHXdtuvWtUchlTXsMPpVWA811Mpr0CF1Z9RzM41j5YPj8txq_D6exlMr6fDhtciJS_U5VVtUBaM1ZrTuumyZ0KcdIoym3JGCKI21qwApWaFkpXNeVcY2QahS3tg9vD3k3ofrYmJrnutsHnk5KiqixLXFQkU_hANaGLMRgrN8G1KuwkRnKfpdxnKfdZymOW2XNz8DhjzAkvCGKU03-xW2-h</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Li, Mao</creator><creator>Liu, Wei</creator><creator>Lei, Jing</creator><creator>Zhu, Jinkun</creator><creator>An, Kang</creator><creator>Chatzinotas, Symeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2668-6368</orcidid><orcidid>https://orcid.org/0000-0001-5122-0001</orcidid><orcidid>https://orcid.org/0000-0001-5180-6563</orcidid><orcidid>https://orcid.org/0000-0003-4720-0635</orcidid><orcidid>https://orcid.org/0000-0002-5838-5826</orcidid><orcidid>https://orcid.org/0000-0002-3645-7454</orcidid></search><sort><creationdate>20240915</creationdate><title>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</title><author>Li, Mao ; Liu, Wei ; Lei, Jing ; Zhu, Jinkun ; An, Kang ; Chatzinotas, Symeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Banded structure</topic><topic>Coarse and fine estimation</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>discrete fractional Fourier transform (DFrFT)</topic><topic>Doppler effect</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>fractional LU-ZF/MMSE equalization</topic><topic>OFDM</topic><topic>Order parameters</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>sensing parameter estimation</topic><topic>Sensors</topic><topic>UM-OTFS waveform</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Jing</creatorcontrib><creatorcontrib>Zhu, Jinkun</creatorcontrib><creatorcontrib>An, Kang</creatorcontrib><creatorcontrib>Chatzinotas, Symeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mao</au><au>Liu, Wei</au><au>Lei, Jing</au><au>Zhu, Jinkun</au><au>An, Kang</au><au>Chatzinotas, Symeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-09-15</date><risdate>2024</risdate><volume>11</volume><issue>18</issue><spage>29235</spage><epage>29251</epage><pages>29235-29251</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Orthogonal time frequency space (OTFS) has attracted a lot of attention as a feasible waveform applied in joint communication and radar (JCR) systems in contrast to orthogonal frequency division multiplexing (OFDM) waveform. To explore the advantages of OTFS waveform, first, a unified matrix (UM) expression is summarized by utilizing discrete fractional Fourier transform (DFrFT), and then a novel OTFS waveform based on UM expression is investigated in this article. The fractional order parameters of the proposed UM-OTFS waveform is set to the same values during preprocessing and Heisenberg transformation stages, and the UM-OTFS waveform can be converted into other waveform forms by undergoing different fractional order parameters. In addition, a three-stage sensing parameter estimation algorithm is developed for target velocity and range estimation through grid partitioning, coarse and fine estimation. Meanwhile, a low-complexity fractional zero force (ZF) or minimum mean square error (MMSE) equalizer based on lower-upper (LU) decomposition (LU-ZF/MMSE) is presented, which results in a log-linear order of complexity without any performance degradation of bite error ratio (BER) by analyzing sparsity and quasi-banded structure of the equivalent matrix. The simulation results indicate the superiority of the proposed UM-OTFS waveform in terms of sensing parameter estimation and BER performance compared with several advanced waveforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3433406</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2668-6368</orcidid><orcidid>https://orcid.org/0000-0001-5122-0001</orcidid><orcidid>https://orcid.org/0000-0001-5180-6563</orcidid><orcidid>https://orcid.org/0000-0003-4720-0635</orcidid><orcidid>https://orcid.org/0000-0002-5838-5826</orcidid><orcidid>https://orcid.org/0000-0002-3645-7454</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-09, Vol.11 (18), p.29235-29251
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10620435
source IEEE Xplore (Online service)
subjects Algorithms
Banded structure
Coarse and fine estimation
Communications systems
Complexity
Complexity theory
discrete fractional Fourier transform (DFrFT)
Doppler effect
Error analysis
Estimation
Fourier transforms
fractional LU-ZF/MMSE equalization
OFDM
Order parameters
Orthogonal Frequency Division Multiplexing
Parameter estimation
Performance degradation
Radar
Radar equipment
sensing parameter estimation
Sensors
UM-OTFS waveform
Waveforms
title Integrated OTFS Waveform Design Based on Unified Matrix for Joint Communication and Radar System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20OTFS%20Waveform%20Design%20Based%20on%20Unified%20Matrix%20for%20Joint%20Communication%20and%20Radar%20System&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Mao&rft.date=2024-09-15&rft.volume=11&rft.issue=18&rft.spage=29235&rft.epage=29251&rft.pages=29235-29251&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3433406&rft_dat=%3Cproquest_ieee_%3E3098881792%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-46a9fab60dd44bd53bcca9f9052ca35f8440205fb64708d37ad9b355d10eca1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098881792&rft_id=info:pmid/&rft_ieee_id=10620435&rfr_iscdi=true