Loading…

Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off

Photodiode (PD) arrays do not violate the second law of thermodynamics. In this paper, we explore the trade-off between PD array photo current and PD size when arrays with the same geometrical fill factor are considered. For this study, we assume a square matrix arrangement of PD. We apply the princ...

Full description

Saved in:
Bibliographic Details
Main Authors: Sperga, Janis, Islim, Mohamed Sufyan, Bian, Rui, Martena, Giovanni Luca, Haas, Harald
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2419
container_issue
container_start_page 2414
container_title
container_volume
creator Sperga, Janis
Islim, Mohamed Sufyan
Bian, Rui
Martena, Giovanni Luca
Haas, Harald
description Photodiode (PD) arrays do not violate the second law of thermodynamics. In this paper, we explore the trade-off between PD array photo current and PD size when arrays with the same geometrical fill factor are considered. For this study, we assume a square matrix arrangement of PD. We apply the principles of energy conservation and, by extension, the second law of thermodynamics to demonstrate that reducing the size of individual PD in the array results in a decrease in photocurrent. This decrease is anticipated even when the geometrical fill factor of the array remains constant, i.e., even if the number of PDs in the array is increased. The photocurrent and size trade-off leads to the photocurrent bandwidth trade-off. The trade-off indicates that the PD array photocurrent is inversely proportional to its bandwidth. The derivation of this trade-off relation assumes a uniform irradiance distribution across the photodetector array. However, our findings show that this trade-off holds true for nearly uniform irradiance distributions and even for non-uniform distributions, such as those encountered with a compound parabolic concentrator (CPC). Our simulation results align closely with theoretical predictions. The implications of this study highlight the importance of considering the trade-off when designing optical wireless communication (OWC) or visible light communication (VLC) links for high data throughput.
doi_str_mv 10.1109/ICC51166.2024.10622212
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10622212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10622212</ieee_id><sourcerecordid>10622212</sourcerecordid><originalsourceid>FETCH-ieee_primary_106222123</originalsourceid><addsrcrecordid>eNqFjtFKwzAUQDNBcOr-QOT-QLvcdO0S37QqE8YULL6O0NzSjLVXksjo3wuizz6dhwOHI8QtyhxRmuVLXZeIVZUrqVY5ykophWomFmatca00GlmuzJmYoyl0hloXF-IyxoOUpTIFzkX71nNi59kR3IdgpwiPDDtO8OH5aBNB6gneqeXRwdaegDtoegoDu2m0g2_jHfwk2q8QaEzwYEd38i710ATrKHvtumtx3tljpMUvr8TN81NTbzJPRPvP4Acbpv3ffPGP_gYiwkge</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off</title><source>IEEE Xplore All Conference Series</source><creator>Sperga, Janis ; Islim, Mohamed Sufyan ; Bian, Rui ; Martena, Giovanni Luca ; Haas, Harald</creator><creatorcontrib>Sperga, Janis ; Islim, Mohamed Sufyan ; Bian, Rui ; Martena, Giovanni Luca ; Haas, Harald</creatorcontrib><description>Photodiode (PD) arrays do not violate the second law of thermodynamics. In this paper, we explore the trade-off between PD array photo current and PD size when arrays with the same geometrical fill factor are considered. For this study, we assume a square matrix arrangement of PD. We apply the principles of energy conservation and, by extension, the second law of thermodynamics to demonstrate that reducing the size of individual PD in the array results in a decrease in photocurrent. This decrease is anticipated even when the geometrical fill factor of the array remains constant, i.e., even if the number of PDs in the array is increased. The photocurrent and size trade-off leads to the photocurrent bandwidth trade-off. The trade-off indicates that the PD array photocurrent is inversely proportional to its bandwidth. The derivation of this trade-off relation assumes a uniform irradiance distribution across the photodetector array. However, our findings show that this trade-off holds true for nearly uniform irradiance distributions and even for non-uniform distributions, such as those encountered with a compound parabolic concentrator (CPC). Our simulation results align closely with theoretical predictions. The implications of this study highlight the importance of considering the trade-off when designing optical wireless communication (OWC) or visible light communication (VLC) links for high data throughput.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781728190549</identifier><identifier>EISBN: 1728190541</identifier><identifier>DOI: 10.1109/ICC51166.2024.10622212</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Fill factor (solar cell) ; LiFi ; Optical receivers ; OWC ; Photoconductivity ; Photodiode arrays ; Thermodynamics ; Throughput ; VLC ; Wireless communication</subject><ispartof>ICC 2024 - IEEE International Conference on Communications, 2024, p.2414-2419</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10622212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10622212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sperga, Janis</creatorcontrib><creatorcontrib>Islim, Mohamed Sufyan</creatorcontrib><creatorcontrib>Bian, Rui</creatorcontrib><creatorcontrib>Martena, Giovanni Luca</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><title>Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off</title><title>ICC 2024 - IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>Photodiode (PD) arrays do not violate the second law of thermodynamics. In this paper, we explore the trade-off between PD array photo current and PD size when arrays with the same geometrical fill factor are considered. For this study, we assume a square matrix arrangement of PD. We apply the principles of energy conservation and, by extension, the second law of thermodynamics to demonstrate that reducing the size of individual PD in the array results in a decrease in photocurrent. This decrease is anticipated even when the geometrical fill factor of the array remains constant, i.e., even if the number of PDs in the array is increased. The photocurrent and size trade-off leads to the photocurrent bandwidth trade-off. The trade-off indicates that the PD array photocurrent is inversely proportional to its bandwidth. The derivation of this trade-off relation assumes a uniform irradiance distribution across the photodetector array. However, our findings show that this trade-off holds true for nearly uniform irradiance distributions and even for non-uniform distributions, such as those encountered with a compound parabolic concentrator (CPC). Our simulation results align closely with theoretical predictions. The implications of this study highlight the importance of considering the trade-off when designing optical wireless communication (OWC) or visible light communication (VLC) links for high data throughput.</description><subject>Bandwidth</subject><subject>Fill factor (solar cell)</subject><subject>LiFi</subject><subject>Optical receivers</subject><subject>OWC</subject><subject>Photoconductivity</subject><subject>Photodiode arrays</subject><subject>Thermodynamics</subject><subject>Throughput</subject><subject>VLC</subject><subject>Wireless communication</subject><issn>1938-1883</issn><isbn>9781728190549</isbn><isbn>1728190541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjtFKwzAUQDNBcOr-QOT-QLvcdO0S37QqE8YULL6O0NzSjLVXksjo3wuizz6dhwOHI8QtyhxRmuVLXZeIVZUrqVY5ykophWomFmatca00GlmuzJmYoyl0hloXF-IyxoOUpTIFzkX71nNi59kR3IdgpwiPDDtO8OH5aBNB6gneqeXRwdaegDtoegoDu2m0g2_jHfwk2q8QaEzwYEd38i710ATrKHvtumtx3tljpMUvr8TN81NTbzJPRPvP4Acbpv3ffPGP_gYiwkge</recordid><startdate>20240609</startdate><enddate>20240609</enddate><creator>Sperga, Janis</creator><creator>Islim, Mohamed Sufyan</creator><creator>Bian, Rui</creator><creator>Martena, Giovanni Luca</creator><creator>Haas, Harald</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240609</creationdate><title>Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off</title><author>Sperga, Janis ; Islim, Mohamed Sufyan ; Bian, Rui ; Martena, Giovanni Luca ; Haas, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106222123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Fill factor (solar cell)</topic><topic>LiFi</topic><topic>Optical receivers</topic><topic>OWC</topic><topic>Photoconductivity</topic><topic>Photodiode arrays</topic><topic>Thermodynamics</topic><topic>Throughput</topic><topic>VLC</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Sperga, Janis</creatorcontrib><creatorcontrib>Islim, Mohamed Sufyan</creatorcontrib><creatorcontrib>Bian, Rui</creatorcontrib><creatorcontrib>Martena, Giovanni Luca</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sperga, Janis</au><au>Islim, Mohamed Sufyan</au><au>Bian, Rui</au><au>Martena, Giovanni Luca</au><au>Haas, Harald</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off</atitle><btitle>ICC 2024 - IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2024-06-09</date><risdate>2024</risdate><spage>2414</spage><epage>2419</epage><pages>2414-2419</pages><eissn>1938-1883</eissn><eisbn>9781728190549</eisbn><eisbn>1728190541</eisbn><abstract>Photodiode (PD) arrays do not violate the second law of thermodynamics. In this paper, we explore the trade-off between PD array photo current and PD size when arrays with the same geometrical fill factor are considered. For this study, we assume a square matrix arrangement of PD. We apply the principles of energy conservation and, by extension, the second law of thermodynamics to demonstrate that reducing the size of individual PD in the array results in a decrease in photocurrent. This decrease is anticipated even when the geometrical fill factor of the array remains constant, i.e., even if the number of PDs in the array is increased. The photocurrent and size trade-off leads to the photocurrent bandwidth trade-off. The trade-off indicates that the PD array photocurrent is inversely proportional to its bandwidth. The derivation of this trade-off relation assumes a uniform irradiance distribution across the photodetector array. However, our findings show that this trade-off holds true for nearly uniform irradiance distributions and even for non-uniform distributions, such as those encountered with a compound parabolic concentrator (CPC). Our simulation results align closely with theoretical predictions. The implications of this study highlight the importance of considering the trade-off when designing optical wireless communication (OWC) or visible light communication (VLC) links for high data throughput.</abstract><pub>IEEE</pub><doi>10.1109/ICC51166.2024.10622212</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1883
ispartof ICC 2024 - IEEE International Conference on Communications, 2024, p.2414-2419
issn 1938-1883
language eng
recordid cdi_ieee_primary_10622212
source IEEE Xplore All Conference Series
subjects Bandwidth
Fill factor (solar cell)
LiFi
Optical receivers
OWC
Photoconductivity
Photodiode arrays
Thermodynamics
Throughput
VLC
Wireless communication
title Photodiode Arrays Do Not Violate the Second Law of Thermodynamics: Photocurrent Bandwidth Trade-Off
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Photodiode%20Arrays%20Do%20Not%20Violate%20the%20Second%20Law%20of%20Thermodynamics:%20Photocurrent%20Bandwidth%20Trade-Off&rft.btitle=ICC%202024%20-%20IEEE%20International%20Conference%20on%20Communications&rft.au=Sperga,%20Janis&rft.date=2024-06-09&rft.spage=2414&rft.epage=2419&rft.pages=2414-2419&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC51166.2024.10622212&rft.eisbn=9781728190549&rft.eisbn_list=1728190541&rft_dat=%3Cieee_CHZPO%3E10622212%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106222123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10622212&rfr_iscdi=true