Loading…

Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks

The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Zainudin, Ahmad, Paramartha Putra, Made Adi, Alief, Revin Naufal, Kim, Dong-Seong, Lee, Jae-Min
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4661
container_issue
container_start_page 4656
container_title
container_volume
creator Zainudin, Ahmad
Paramartha Putra, Made Adi
Alief, Revin Naufal
Kim, Dong-Seong
Lee, Jae-Min
description The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.
doi_str_mv 10.1109/ICC51166.2024.10622717
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10622717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10622717</ieee_id><sourcerecordid>10622717</sourcerecordid><originalsourceid>FETCH-ieee_primary_106227173</originalsourceid><addsrcrecordid>eNqFjsFOwkAUAFcTExH5A2P2B1r2bWm7e6Vo6MWLvRLyKA94snbJ7irx7-WgZ05zmEwyQjyDygGUnbZNUwJUVa6VnuWgKq1rqG_ExNYGam3AqnJmb8UIbGEyMKa4Fw8xfihValvASKzmzvfH_oA8ZMhb2srGO4cbHzDxN8nuEAiTXFCiPrEf5M4H-U79V-BhLxe854ROdudLvsF4ydvWd_KN0tmHY3wUdzt0kSZ_HIun15euWWZMROtT4E8MP-v_7eKK_gWN7EZR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><source>IEEE Xplore All Conference Series</source><creator>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</creator><creatorcontrib>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</creatorcontrib><description>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781728190549</identifier><identifier>EISBN: 1728190541</identifier><identifier>DOI: 10.1109/ICC51166.2024.10622717</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; blockchain ; Blockchains ; Collaboration ; Collaborative intrusion detection ; Digital signatures ; digital twin ; industrial internet of things (IIoT) ; Network intrusion detection ; Robustness ; Threat assessment ; verifiable off-chain aggregation</subject><ispartof>ICC 2024 - IEEE International Conference on Communications, 2024, p.4656-4661</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10622717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10622717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zainudin, Ahmad</creatorcontrib><creatorcontrib>Paramartha Putra, Made Adi</creatorcontrib><creatorcontrib>Alief, Revin Naufal</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><title>ICC 2024 - IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</description><subject>Accuracy</subject><subject>blockchain</subject><subject>Blockchains</subject><subject>Collaboration</subject><subject>Collaborative intrusion detection</subject><subject>Digital signatures</subject><subject>digital twin</subject><subject>industrial internet of things (IIoT)</subject><subject>Network intrusion detection</subject><subject>Robustness</subject><subject>Threat assessment</subject><subject>verifiable off-chain aggregation</subject><issn>1938-1883</issn><isbn>9781728190549</isbn><isbn>1728190541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFOwkAUAFcTExH5A2P2B1r2bWm7e6Vo6MWLvRLyKA94snbJ7irx7-WgZ05zmEwyQjyDygGUnbZNUwJUVa6VnuWgKq1rqG_ExNYGam3AqnJmb8UIbGEyMKa4Fw8xfihValvASKzmzvfH_oA8ZMhb2srGO4cbHzDxN8nuEAiTXFCiPrEf5M4H-U79V-BhLxe854ROdudLvsF4ydvWd_KN0tmHY3wUdzt0kSZ_HIun15euWWZMROtT4E8MP-v_7eKK_gWN7EZR</recordid><startdate>20240609</startdate><enddate>20240609</enddate><creator>Zainudin, Ahmad</creator><creator>Paramartha Putra, Made Adi</creator><creator>Alief, Revin Naufal</creator><creator>Kim, Dong-Seong</creator><creator>Lee, Jae-Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240609</creationdate><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><author>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106227173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>blockchain</topic><topic>Blockchains</topic><topic>Collaboration</topic><topic>Collaborative intrusion detection</topic><topic>Digital signatures</topic><topic>digital twin</topic><topic>industrial internet of things (IIoT)</topic><topic>Network intrusion detection</topic><topic>Robustness</topic><topic>Threat assessment</topic><topic>verifiable off-chain aggregation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zainudin, Ahmad</creatorcontrib><creatorcontrib>Paramartha Putra, Made Adi</creatorcontrib><creatorcontrib>Alief, Revin Naufal</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zainudin, Ahmad</au><au>Paramartha Putra, Made Adi</au><au>Alief, Revin Naufal</au><au>Kim, Dong-Seong</au><au>Lee, Jae-Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</atitle><btitle>ICC 2024 - IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2024-06-09</date><risdate>2024</risdate><spage>4656</spage><epage>4661</epage><pages>4656-4661</pages><eissn>1938-1883</eissn><eisbn>9781728190549</eisbn><eisbn>1728190541</eisbn><abstract>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</abstract><pub>IEEE</pub><doi>10.1109/ICC51166.2024.10622717</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1883
ispartof ICC 2024 - IEEE International Conference on Communications, 2024, p.4656-4661
issn 1938-1883
language eng
recordid cdi_ieee_primary_10622717
source IEEE Xplore All Conference Series
subjects Accuracy
blockchain
Blockchains
Collaboration
Collaborative intrusion detection
Digital signatures
digital twin
industrial internet of things (IIoT)
Network intrusion detection
Robustness
Threat assessment
verifiable off-chain aggregation
title Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blockchain-aided%20Collaborative%20Threat%20Detection%20for%20Securing%20Digital%20Twin-based%20IIoT%20Networks&rft.btitle=ICC%202024%20-%20IEEE%20International%20Conference%20on%20Communications&rft.au=Zainudin,%20Ahmad&rft.date=2024-06-09&rft.spage=4656&rft.epage=4661&rft.pages=4656-4661&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC51166.2024.10622717&rft.eisbn=9781728190549&rft.eisbn_list=1728190541&rft_dat=%3Cieee_CHZPO%3E10622717%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106227173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10622717&rfr_iscdi=true