Loading…
Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks
The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-ba...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4661 |
container_issue | |
container_start_page | 4656 |
container_title | |
container_volume | |
creator | Zainudin, Ahmad Paramartha Putra, Made Adi Alief, Revin Naufal Kim, Dong-Seong Lee, Jae-Min |
description | The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds. |
doi_str_mv | 10.1109/ICC51166.2024.10622717 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10622717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10622717</ieee_id><sourcerecordid>10622717</sourcerecordid><originalsourceid>FETCH-ieee_primary_106227173</originalsourceid><addsrcrecordid>eNqFjsFOwkAUAFcTExH5A2P2B1r2bWm7e6Vo6MWLvRLyKA94snbJ7irx7-WgZ05zmEwyQjyDygGUnbZNUwJUVa6VnuWgKq1rqG_ExNYGam3AqnJmb8UIbGEyMKa4Fw8xfihValvASKzmzvfH_oA8ZMhb2srGO4cbHzDxN8nuEAiTXFCiPrEf5M4H-U79V-BhLxe854ROdudLvsF4ydvWd_KN0tmHY3wUdzt0kSZ_HIun15euWWZMROtT4E8MP-v_7eKK_gWN7EZR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><source>IEEE Xplore All Conference Series</source><creator>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</creator><creatorcontrib>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</creatorcontrib><description>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781728190549</identifier><identifier>EISBN: 1728190541</identifier><identifier>DOI: 10.1109/ICC51166.2024.10622717</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; blockchain ; Blockchains ; Collaboration ; Collaborative intrusion detection ; Digital signatures ; digital twin ; industrial internet of things (IIoT) ; Network intrusion detection ; Robustness ; Threat assessment ; verifiable off-chain aggregation</subject><ispartof>ICC 2024 - IEEE International Conference on Communications, 2024, p.4656-4661</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10622717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10622717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zainudin, Ahmad</creatorcontrib><creatorcontrib>Paramartha Putra, Made Adi</creatorcontrib><creatorcontrib>Alief, Revin Naufal</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><title>ICC 2024 - IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</description><subject>Accuracy</subject><subject>blockchain</subject><subject>Blockchains</subject><subject>Collaboration</subject><subject>Collaborative intrusion detection</subject><subject>Digital signatures</subject><subject>digital twin</subject><subject>industrial internet of things (IIoT)</subject><subject>Network intrusion detection</subject><subject>Robustness</subject><subject>Threat assessment</subject><subject>verifiable off-chain aggregation</subject><issn>1938-1883</issn><isbn>9781728190549</isbn><isbn>1728190541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsFOwkAUAFcTExH5A2P2B1r2bWm7e6Vo6MWLvRLyKA94snbJ7irx7-WgZ05zmEwyQjyDygGUnbZNUwJUVa6VnuWgKq1rqG_ExNYGam3AqnJmb8UIbGEyMKa4Fw8xfihValvASKzmzvfH_oA8ZMhb2srGO4cbHzDxN8nuEAiTXFCiPrEf5M4H-U79V-BhLxe854ROdudLvsF4ydvWd_KN0tmHY3wUdzt0kSZ_HIun15euWWZMROtT4E8MP-v_7eKK_gWN7EZR</recordid><startdate>20240609</startdate><enddate>20240609</enddate><creator>Zainudin, Ahmad</creator><creator>Paramartha Putra, Made Adi</creator><creator>Alief, Revin Naufal</creator><creator>Kim, Dong-Seong</creator><creator>Lee, Jae-Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240609</creationdate><title>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</title><author>Zainudin, Ahmad ; Paramartha Putra, Made Adi ; Alief, Revin Naufal ; Kim, Dong-Seong ; Lee, Jae-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106227173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>blockchain</topic><topic>Blockchains</topic><topic>Collaboration</topic><topic>Collaborative intrusion detection</topic><topic>Digital signatures</topic><topic>digital twin</topic><topic>industrial internet of things (IIoT)</topic><topic>Network intrusion detection</topic><topic>Robustness</topic><topic>Threat assessment</topic><topic>verifiable off-chain aggregation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zainudin, Ahmad</creatorcontrib><creatorcontrib>Paramartha Putra, Made Adi</creatorcontrib><creatorcontrib>Alief, Revin Naufal</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><creatorcontrib>Lee, Jae-Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zainudin, Ahmad</au><au>Paramartha Putra, Made Adi</au><au>Alief, Revin Naufal</au><au>Kim, Dong-Seong</au><au>Lee, Jae-Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks</atitle><btitle>ICC 2024 - IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2024-06-09</date><risdate>2024</risdate><spage>4656</spage><epage>4661</epage><pages>4656-4661</pages><eissn>1938-1883</eissn><eisbn>9781728190549</eisbn><eisbn>1728190541</eisbn><abstract>The distributed and heterogeneous connections in the digital twin (DT)-based industrial Internet of Things (IIoT) are vulnerable to cyber-attacks and malicious activities. This study proposes a permissioned blockchain-assisted collaborative and decentralized cyber threat detection for securing DT-based IIoT networks. A context-aware network intrusion detection system (C-NIDS) model was developed using factorized and grouped convolution structures to detect adversarial attacks in virtual and physical environments. A verifiable off-chain aggregation technique with a digital signature is implemented to provide a trustworthy and anti-tampering aggregated model with minimum transaction time. The results exhibit the robustness of the proposed model by achieving an attack detection accuracy of 99.50% using a lightweight model structure with trainable parameters of 4,634 and MFLOPs calculation of 0.0088. Moreover, the verifiable off-chain aggregation performs a total transaction time of 0.0244 seconds.</abstract><pub>IEEE</pub><doi>10.1109/ICC51166.2024.10622717</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1938-1883 |
ispartof | ICC 2024 - IEEE International Conference on Communications, 2024, p.4656-4661 |
issn | 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_10622717 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy blockchain Blockchains Collaboration Collaborative intrusion detection Digital signatures digital twin industrial internet of things (IIoT) Network intrusion detection Robustness Threat assessment verifiable off-chain aggregation |
title | Blockchain-aided Collaborative Threat Detection for Securing Digital Twin-based IIoT Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blockchain-aided%20Collaborative%20Threat%20Detection%20for%20Securing%20Digital%20Twin-based%20IIoT%20Networks&rft.btitle=ICC%202024%20-%20IEEE%20International%20Conference%20on%20Communications&rft.au=Zainudin,%20Ahmad&rft.date=2024-06-09&rft.spage=4656&rft.epage=4661&rft.pages=4656-4661&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC51166.2024.10622717&rft.eisbn=9781728190549&rft.eisbn_list=1728190541&rft_dat=%3Cieee_CHZPO%3E10622717%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106227173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10622717&rfr_iscdi=true |