Loading…
Increase the data acquisition rate of a ghost polarimetry system via deep learning
Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequen...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 234 |
container_issue | |
container_start_page | 234 |
container_title | |
container_volume | |
creator | Shumigai, V.S. Moreva, P.E. Tuchin, V.S. Startseva, A.M. Nasedkin, B.A. Tcypkin, A.N. |
description | Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic. |
doi_str_mv | 10.1109/ICLO59702.2024.10624566 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10624566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10624566</ieee_id><sourcerecordid>10624566</sourcerecordid><originalsourceid>FETCH-ieee_primary_106245663</originalsourceid><addsrcrecordid>eNqFjsGKwjAUAKMgKNo_EHw_YPclbVJzFkVhQRDv5aFPjdS2JlHo3-vBPe9pDsPACDGTmEqJ9me7_N1pW6BKFao8lWhUro3picQWdpFpzCyaIu-LkTK5mmu9wKFIQrghYqY-VsuR2G_ro2cKDPHKcKJIQMfH0wUXXVODp8jQnIHgcm1ChLapyLs7R99B6ELkO7wcwYm5hYrJ166-TMTgTFXg5MuxmK5Xh-Vm7pi5bD85-a78283-0W9TX0O3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><source>IEEE Xplore All Conference Series</source><creator>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</creator><creatorcontrib>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</creatorcontrib><description>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</description><identifier>EISSN: 2642-5580</identifier><identifier>EISBN: 9798350390674</identifier><identifier>DOI: 10.1109/ICLO59702.2024.10624566</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Correlation ; correlation function ; Data acquisition ; data acquisition rate ; Deep learning ; ghost polarimetry ; Laser applications ; Optics ; Polarimetry</subject><ispartof>2024 International Conference Laser Optics (ICLO), 2024, p.234-234</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10624566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10624566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shumigai, V.S.</creatorcontrib><creatorcontrib>Moreva, P.E.</creatorcontrib><creatorcontrib>Tuchin, V.S.</creatorcontrib><creatorcontrib>Startseva, A.M.</creatorcontrib><creatorcontrib>Nasedkin, B.A.</creatorcontrib><creatorcontrib>Tcypkin, A.N.</creatorcontrib><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><title>2024 International Conference Laser Optics (ICLO)</title><addtitle>ICLO</addtitle><description>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</description><subject>Biology</subject><subject>Correlation</subject><subject>correlation function</subject><subject>Data acquisition</subject><subject>data acquisition rate</subject><subject>Deep learning</subject><subject>ghost polarimetry</subject><subject>Laser applications</subject><subject>Optics</subject><subject>Polarimetry</subject><issn>2642-5580</issn><isbn>9798350390674</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsGKwjAUAKMgKNo_EHw_YPclbVJzFkVhQRDv5aFPjdS2JlHo3-vBPe9pDsPACDGTmEqJ9me7_N1pW6BKFao8lWhUro3picQWdpFpzCyaIu-LkTK5mmu9wKFIQrghYqY-VsuR2G_ro2cKDPHKcKJIQMfH0wUXXVODp8jQnIHgcm1ChLapyLs7R99B6ELkO7wcwYm5hYrJ166-TMTgTFXg5MuxmK5Xh-Vm7pi5bD85-a78283-0W9TX0O3</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shumigai, V.S.</creator><creator>Moreva, P.E.</creator><creator>Tuchin, V.S.</creator><creator>Startseva, A.M.</creator><creator>Nasedkin, B.A.</creator><creator>Tcypkin, A.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240701</creationdate><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><author>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106245663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biology</topic><topic>Correlation</topic><topic>correlation function</topic><topic>Data acquisition</topic><topic>data acquisition rate</topic><topic>Deep learning</topic><topic>ghost polarimetry</topic><topic>Laser applications</topic><topic>Optics</topic><topic>Polarimetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Shumigai, V.S.</creatorcontrib><creatorcontrib>Moreva, P.E.</creatorcontrib><creatorcontrib>Tuchin, V.S.</creatorcontrib><creatorcontrib>Startseva, A.M.</creatorcontrib><creatorcontrib>Nasedkin, B.A.</creatorcontrib><creatorcontrib>Tcypkin, A.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shumigai, V.S.</au><au>Moreva, P.E.</au><au>Tuchin, V.S.</au><au>Startseva, A.M.</au><au>Nasedkin, B.A.</au><au>Tcypkin, A.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Increase the data acquisition rate of a ghost polarimetry system via deep learning</atitle><btitle>2024 International Conference Laser Optics (ICLO)</btitle><stitle>ICLO</stitle><date>2024-07-01</date><risdate>2024</risdate><spage>234</spage><epage>234</epage><pages>234-234</pages><eissn>2642-5580</eissn><eisbn>9798350390674</eisbn><abstract>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</abstract><pub>IEEE</pub><doi>10.1109/ICLO59702.2024.10624566</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-5580 |
ispartof | 2024 International Conference Laser Optics (ICLO), 2024, p.234-234 |
issn | 2642-5580 |
language | eng |
recordid | cdi_ieee_primary_10624566 |
source | IEEE Xplore All Conference Series |
subjects | Biology Correlation correlation function Data acquisition data acquisition rate Deep learning ghost polarimetry Laser applications Optics Polarimetry |
title | Increase the data acquisition rate of a ghost polarimetry system via deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Increase%20the%20data%20acquisition%20rate%20of%20a%20ghost%20polarimetry%20system%20via%20deep%20learning&rft.btitle=2024%20International%20Conference%20Laser%20Optics%20(ICLO)&rft.au=Shumigai,%20V.S.&rft.date=2024-07-01&rft.spage=234&rft.epage=234&rft.pages=234-234&rft.eissn=2642-5580&rft_id=info:doi/10.1109/ICLO59702.2024.10624566&rft.eisbn=9798350390674&rft_dat=%3Cieee_CHZPO%3E10624566%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106245663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10624566&rfr_iscdi=true |