Loading…

Increase the data acquisition rate of a ghost polarimetry system via deep learning

Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequen...

Full description

Saved in:
Bibliographic Details
Main Authors: Shumigai, V.S., Moreva, P.E., Tuchin, V.S., Startseva, A.M., Nasedkin, B.A., Tcypkin, A.N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 234
container_issue
container_start_page 234
container_title
container_volume
creator Shumigai, V.S.
Moreva, P.E.
Tuchin, V.S.
Startseva, A.M.
Nasedkin, B.A.
Tcypkin, A.N.
description Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.
doi_str_mv 10.1109/ICLO59702.2024.10624566
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10624566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10624566</ieee_id><sourcerecordid>10624566</sourcerecordid><originalsourceid>FETCH-ieee_primary_106245663</originalsourceid><addsrcrecordid>eNqFjsGKwjAUAKMgKNo_EHw_YPclbVJzFkVhQRDv5aFPjdS2JlHo3-vBPe9pDsPACDGTmEqJ9me7_N1pW6BKFao8lWhUro3picQWdpFpzCyaIu-LkTK5mmu9wKFIQrghYqY-VsuR2G_ro2cKDPHKcKJIQMfH0wUXXVODp8jQnIHgcm1ChLapyLs7R99B6ELkO7wcwYm5hYrJ166-TMTgTFXg5MuxmK5Xh-Vm7pi5bD85-a78283-0W9TX0O3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><source>IEEE Xplore All Conference Series</source><creator>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</creator><creatorcontrib>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</creatorcontrib><description>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</description><identifier>EISSN: 2642-5580</identifier><identifier>EISBN: 9798350390674</identifier><identifier>DOI: 10.1109/ICLO59702.2024.10624566</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Correlation ; correlation function ; Data acquisition ; data acquisition rate ; Deep learning ; ghost polarimetry ; Laser applications ; Optics ; Polarimetry</subject><ispartof>2024 International Conference Laser Optics (ICLO), 2024, p.234-234</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10624566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54534,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10624566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shumigai, V.S.</creatorcontrib><creatorcontrib>Moreva, P.E.</creatorcontrib><creatorcontrib>Tuchin, V.S.</creatorcontrib><creatorcontrib>Startseva, A.M.</creatorcontrib><creatorcontrib>Nasedkin, B.A.</creatorcontrib><creatorcontrib>Tcypkin, A.N.</creatorcontrib><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><title>2024 International Conference Laser Optics (ICLO)</title><addtitle>ICLO</addtitle><description>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</description><subject>Biology</subject><subject>Correlation</subject><subject>correlation function</subject><subject>Data acquisition</subject><subject>data acquisition rate</subject><subject>Deep learning</subject><subject>ghost polarimetry</subject><subject>Laser applications</subject><subject>Optics</subject><subject>Polarimetry</subject><issn>2642-5580</issn><isbn>9798350390674</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsGKwjAUAKMgKNo_EHw_YPclbVJzFkVhQRDv5aFPjdS2JlHo3-vBPe9pDsPACDGTmEqJ9me7_N1pW6BKFao8lWhUro3picQWdpFpzCyaIu-LkTK5mmu9wKFIQrghYqY-VsuR2G_ro2cKDPHKcKJIQMfH0wUXXVODp8jQnIHgcm1ChLapyLs7R99B6ELkO7wcwYm5hYrJ166-TMTgTFXg5MuxmK5Xh-Vm7pi5bD85-a78283-0W9TX0O3</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shumigai, V.S.</creator><creator>Moreva, P.E.</creator><creator>Tuchin, V.S.</creator><creator>Startseva, A.M.</creator><creator>Nasedkin, B.A.</creator><creator>Tcypkin, A.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240701</creationdate><title>Increase the data acquisition rate of a ghost polarimetry system via deep learning</title><author>Shumigai, V.S. ; Moreva, P.E. ; Tuchin, V.S. ; Startseva, A.M. ; Nasedkin, B.A. ; Tcypkin, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106245663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biology</topic><topic>Correlation</topic><topic>correlation function</topic><topic>Data acquisition</topic><topic>data acquisition rate</topic><topic>Deep learning</topic><topic>ghost polarimetry</topic><topic>Laser applications</topic><topic>Optics</topic><topic>Polarimetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Shumigai, V.S.</creatorcontrib><creatorcontrib>Moreva, P.E.</creatorcontrib><creatorcontrib>Tuchin, V.S.</creatorcontrib><creatorcontrib>Startseva, A.M.</creatorcontrib><creatorcontrib>Nasedkin, B.A.</creatorcontrib><creatorcontrib>Tcypkin, A.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shumigai, V.S.</au><au>Moreva, P.E.</au><au>Tuchin, V.S.</au><au>Startseva, A.M.</au><au>Nasedkin, B.A.</au><au>Tcypkin, A.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Increase the data acquisition rate of a ghost polarimetry system via deep learning</atitle><btitle>2024 International Conference Laser Optics (ICLO)</btitle><stitle>ICLO</stitle><date>2024-07-01</date><risdate>2024</risdate><spage>234</spage><epage>234</epage><pages>234-234</pages><eissn>2642-5580</eissn><eisbn>9798350390674</eisbn><abstract>Application of ghost polarimetry is significantly limited due to the low data acquisition rate. We present the integration of deep learning into a ghost polarimetry to analyze the intensity correlation function and subsequent formation of improved patterns with a modified spectrum of spatial frequencies. Proposed modification makes ghost polarimetry more attractive for biological researches, where the object is often dynamic.</abstract><pub>IEEE</pub><doi>10.1109/ICLO59702.2024.10624566</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-5580
ispartof 2024 International Conference Laser Optics (ICLO), 2024, p.234-234
issn 2642-5580
language eng
recordid cdi_ieee_primary_10624566
source IEEE Xplore All Conference Series
subjects Biology
Correlation
correlation function
Data acquisition
data acquisition rate
Deep learning
ghost polarimetry
Laser applications
Optics
Polarimetry
title Increase the data acquisition rate of a ghost polarimetry system via deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Increase%20the%20data%20acquisition%20rate%20of%20a%20ghost%20polarimetry%20system%20via%20deep%20learning&rft.btitle=2024%20International%20Conference%20Laser%20Optics%20(ICLO)&rft.au=Shumigai,%20V.S.&rft.date=2024-07-01&rft.spage=234&rft.epage=234&rft.pages=234-234&rft.eissn=2642-5580&rft_id=info:doi/10.1109/ICLO59702.2024.10624566&rft.eisbn=9798350390674&rft_dat=%3Cieee_CHZPO%3E10624566%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106245663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10624566&rfr_iscdi=true