Loading…
Scalable Emotion Recognition Model with Context Information for Driver Monitoring System
Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which he...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 24 |
container_issue | |
container_start_page | 19 |
container_title | |
container_volume | |
creator | Colaco, Savina Jassica Han, Dong Seog |
description | Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction. |
doi_str_mv | 10.1109/ICUFN61752.2024.10625353 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10625353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10625353</ieee_id><sourcerecordid>10625353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXAXBUvMHPuwPpO7uyd4eJbYaqArWgm9lk5ytK0lWkqD27xuqPs3AmRnmDCGUswXnzN4U-Xb1pLiWYiGYyBacKSFBwhlJrLYGJAMjhTXnZCa4kqmRoC5JMgwfjDEQnBsGM_K2qVzjygbpso1jiB19wSruu3Dij7HGhn6H8Z3msRvxZ6RF52PfutN5YvSuD1_YT8rJEvvQ7enmMIzYXpEL75oBkz-ck-1q-Zo_pOvn-yK_XadhKjymwEtmaq8tolF6esBrpTKHiiuHzgvlLXPgbSk0eDDKWl971CAzW2UoPczJ9W9uQMTdZx9a1x92_2PAEXF5VS8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><source>IEEE Xplore All Conference Series</source><creator>Colaco, Savina Jassica ; Han, Dong Seog</creator><creatorcontrib>Colaco, Savina Jassica ; Han, Dong Seog</creatorcontrib><description>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</description><identifier>EISSN: 2165-8536</identifier><identifier>EISBN: 9798350385298</identifier><identifier>DOI: 10.1109/ICUFN61752.2024.10625353</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; convolutional neural network (CNN) ; Deep learning ; Emotion recognition ; Focusing ; Human computer interaction ; Neural networks ; Representation learning</subject><ispartof>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2024, p.19-24</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10625353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10625353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colaco, Savina Jassica</creatorcontrib><creatorcontrib>Han, Dong Seog</creatorcontrib><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><title>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN)</title><addtitle>ICUFN</addtitle><description>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</description><subject>Accuracy</subject><subject>Classification</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Emotion recognition</subject><subject>Focusing</subject><subject>Human computer interaction</subject><subject>Neural networks</subject><subject>Representation learning</subject><issn>2165-8536</issn><isbn>9798350385298</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtKw0AUXAXBUvMHPuwPpO7uyd4eJbYaqArWgm9lk5ytK0lWkqD27xuqPs3AmRnmDCGUswXnzN4U-Xb1pLiWYiGYyBacKSFBwhlJrLYGJAMjhTXnZCa4kqmRoC5JMgwfjDEQnBsGM_K2qVzjygbpso1jiB19wSruu3Dij7HGhn6H8Z3msRvxZ6RF52PfutN5YvSuD1_YT8rJEvvQ7enmMIzYXpEL75oBkz-ck-1q-Zo_pOvn-yK_XadhKjymwEtmaq8tolF6esBrpTKHiiuHzgvlLXPgbSk0eDDKWl971CAzW2UoPczJ9W9uQMTdZx9a1x92_2PAEXF5VS8</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Colaco, Savina Jassica</creator><creator>Han, Dong Seog</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240702</creationdate><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><author>Colaco, Savina Jassica ; Han, Dong Seog</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Emotion recognition</topic><topic>Focusing</topic><topic>Human computer interaction</topic><topic>Neural networks</topic><topic>Representation learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Colaco, Savina Jassica</creatorcontrib><creatorcontrib>Han, Dong Seog</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colaco, Savina Jassica</au><au>Han, Dong Seog</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</atitle><btitle>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN)</btitle><stitle>ICUFN</stitle><date>2024-07-02</date><risdate>2024</risdate><spage>19</spage><epage>24</epage><pages>19-24</pages><eissn>2165-8536</eissn><eisbn>9798350385298</eisbn><abstract>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</abstract><pub>IEEE</pub><doi>10.1109/ICUFN61752.2024.10625353</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2165-8536 |
ispartof | 2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2024, p.19-24 |
issn | 2165-8536 |
language | eng |
recordid | cdi_ieee_primary_10625353 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Classification convolutional neural network (CNN) Deep learning Emotion recognition Focusing Human computer interaction Neural networks Representation learning |
title | Scalable Emotion Recognition Model with Context Information for Driver Monitoring System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scalable%20Emotion%20Recognition%20Model%20with%20Context%20Information%20for%20Driver%20Monitoring%20System&rft.btitle=2024%20Fifteenth%20International%20Conference%20on%20Ubiquitous%20and%20Future%20Networks%20(ICUFN)&rft.au=Colaco,%20Savina%20Jassica&rft.date=2024-07-02&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.eissn=2165-8536&rft_id=info:doi/10.1109/ICUFN61752.2024.10625353&rft.eisbn=9798350385298&rft_dat=%3Cieee_CHZPO%3E10625353%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10625353&rfr_iscdi=true |