Loading…

Scalable Emotion Recognition Model with Context Information for Driver Monitoring System

Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which he...

Full description

Saved in:
Bibliographic Details
Main Authors: Colaco, Savina Jassica, Han, Dong Seog
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 24
container_issue
container_start_page 19
container_title
container_volume
creator Colaco, Savina Jassica
Han, Dong Seog
description Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.
doi_str_mv 10.1109/ICUFN61752.2024.10625353
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10625353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10625353</ieee_id><sourcerecordid>10625353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXAXBUvMHPuwPpO7uyd4eJbYaqArWgm9lk5ytK0lWkqD27xuqPs3AmRnmDCGUswXnzN4U-Xb1pLiWYiGYyBacKSFBwhlJrLYGJAMjhTXnZCa4kqmRoC5JMgwfjDEQnBsGM_K2qVzjygbpso1jiB19wSruu3Dij7HGhn6H8Z3msRvxZ6RF52PfutN5YvSuD1_YT8rJEvvQ7enmMIzYXpEL75oBkz-ck-1q-Zo_pOvn-yK_XadhKjymwEtmaq8tolF6esBrpTKHiiuHzgvlLXPgbSk0eDDKWl971CAzW2UoPczJ9W9uQMTdZx9a1x92_2PAEXF5VS8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><source>IEEE Xplore All Conference Series</source><creator>Colaco, Savina Jassica ; Han, Dong Seog</creator><creatorcontrib>Colaco, Savina Jassica ; Han, Dong Seog</creatorcontrib><description>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</description><identifier>EISSN: 2165-8536</identifier><identifier>EISBN: 9798350385298</identifier><identifier>DOI: 10.1109/ICUFN61752.2024.10625353</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; convolutional neural network (CNN) ; Deep learning ; Emotion recognition ; Focusing ; Human computer interaction ; Neural networks ; Representation learning</subject><ispartof>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2024, p.19-24</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10625353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10625353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colaco, Savina Jassica</creatorcontrib><creatorcontrib>Han, Dong Seog</creatorcontrib><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><title>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN)</title><addtitle>ICUFN</addtitle><description>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</description><subject>Accuracy</subject><subject>Classification</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Emotion recognition</subject><subject>Focusing</subject><subject>Human computer interaction</subject><subject>Neural networks</subject><subject>Representation learning</subject><issn>2165-8536</issn><isbn>9798350385298</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtKw0AUXAXBUvMHPuwPpO7uyd4eJbYaqArWgm9lk5ytK0lWkqD27xuqPs3AmRnmDCGUswXnzN4U-Xb1pLiWYiGYyBacKSFBwhlJrLYGJAMjhTXnZCa4kqmRoC5JMgwfjDEQnBsGM_K2qVzjygbpso1jiB19wSruu3Dij7HGhn6H8Z3msRvxZ6RF52PfutN5YvSuD1_YT8rJEvvQ7enmMIzYXpEL75oBkz-ck-1q-Zo_pOvn-yK_XadhKjymwEtmaq8tolF6esBrpTKHiiuHzgvlLXPgbSk0eDDKWl971CAzW2UoPczJ9W9uQMTdZx9a1x92_2PAEXF5VS8</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Colaco, Savina Jassica</creator><creator>Han, Dong Seog</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240702</creationdate><title>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</title><author>Colaco, Savina Jassica ; Han, Dong Seog</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Emotion recognition</topic><topic>Focusing</topic><topic>Human computer interaction</topic><topic>Neural networks</topic><topic>Representation learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Colaco, Savina Jassica</creatorcontrib><creatorcontrib>Han, Dong Seog</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colaco, Savina Jassica</au><au>Han, Dong Seog</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scalable Emotion Recognition Model with Context Information for Driver Monitoring System</atitle><btitle>2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN)</btitle><stitle>ICUFN</stitle><date>2024-07-02</date><risdate>2024</risdate><spage>19</spage><epage>24</epage><pages>19-24</pages><eissn>2165-8536</eissn><eisbn>9798350385298</eisbn><abstract>Understanding emotions from an individual's per-spective is critical for daily social interactions. If machines could similarly comprehend emotions, they could interact more effectively with people. Recognizing emotions accurately often necessitates considering the situational context, which helps in identifying a broader spectrum of emotions. Current emotion detection systems predominantly rely on facial images, often overlooking contextual influences. This paper proposes an emotion recognition model that combines facial feature analysis with an understanding of the surrounding context. The validation on the EMOTIC benchmark confirms the model's usefulness, registering an overall accuracy percentage of 84.9%. The paper emphasizes the necessity of combining contextual information for more accurate emotion recognition, which will pave the way for advances in sectors such as medical imaging, augmented reality, and human-computer interaction.</abstract><pub>IEEE</pub><doi>10.1109/ICUFN61752.2024.10625353</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2165-8536
ispartof 2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2024, p.19-24
issn 2165-8536
language eng
recordid cdi_ieee_primary_10625353
source IEEE Xplore All Conference Series
subjects Accuracy
Classification
convolutional neural network (CNN)
Deep learning
Emotion recognition
Focusing
Human computer interaction
Neural networks
Representation learning
title Scalable Emotion Recognition Model with Context Information for Driver Monitoring System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scalable%20Emotion%20Recognition%20Model%20with%20Context%20Information%20for%20Driver%20Monitoring%20System&rft.btitle=2024%20Fifteenth%20International%20Conference%20on%20Ubiquitous%20and%20Future%20Networks%20(ICUFN)&rft.au=Colaco,%20Savina%20Jassica&rft.date=2024-07-02&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.eissn=2165-8536&rft_id=info:doi/10.1109/ICUFN61752.2024.10625353&rft.eisbn=9798350385298&rft_dat=%3Cieee_CHZPO%3E10625353%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-31b08df79ee867253f7664ae616aeaf26f90a3f9b273f38699fdfe73549c4e5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10625353&rfr_iscdi=true