Loading…

Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation

In addressing the risk of blindness caused by glaucoma, precise and rapid segmentation of the optic disc and cup is vital for early detection and monitoring. However, manual segmentation, the standard approach, is inefficient and subjective, varying with expert experience and expertise. To overcome...

Full description

Saved in:
Bibliographic Details
Main Authors: Cho, Sanghyeon, Kang, Bogyeong, Heo, Keun-Soo, Jo, EunJung, Kam, Tae-Eui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Cho, Sanghyeon
Kang, Bogyeong
Heo, Keun-Soo
Jo, EunJung
Kam, Tae-Eui
description In addressing the risk of blindness caused by glaucoma, precise and rapid segmentation of the optic disc and cup is vital for early detection and monitoring. However, manual segmentation, the standard approach, is inefficient and subjective, varying with expert experience and expertise. To overcome this limitation, developing automated segmentation methods is essential. Despite advancements in deep learning in this field, performance declines when applied across different domains, impeding practical use. Previous studies have struggled to preserve the structural information of source images and overlooked variations in the visual characteristics of fundus images even within the same center. To this end, we propose an effective image-level unsupervised domain adaptation (UDA) framework to enhance optic disc and cup segmentation. This framework generates pseudo-target domain images via image-to-image translation from source domain images. It addresses structural preservation challenges by incorporating a spatially correlative loss in the QS-Attn translation model. Furthermore, we use multi-view image translation with CycleGAN to enhance the visual diversity of the translated images, benefiting the segmentation model. The synergy of these models produces a robust training set, improving the performance of the segmentation model. Our experiments on the RIGA+ dataset demonstrate that our framework outperforms current state-of-the-art methods in the segmentation performance.
doi_str_mv 10.1109/ISBI56570.2024.10635127
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10635127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10635127</ieee_id><sourcerecordid>10635127</sourcerecordid><originalsourceid>FETCH-ieee_primary_106351273</originalsourceid><addsrcrecordid>eNqFT91KwzAYjYLgcH0Dwe8FWpMmWdvLuU22C3FQ9XaE9JuLrGnIj-KF725xeu25OXD-4BByw2jBGG1uN-3dRs5kRYuSlqJgdMYlK6szkjVVU3NJOeOc1-dkwhoh81rI8pJkIbzREZUQnIoJ-VrZg7IaO2ijTzomj7D1GNC_q2gGC8p28JCO0eQvBj9g7pwflD6AsfBsQ3Jj0ISxvhx6NWrzTrl4au4HD48uGg1LE_TP0CI5aPG1R3vKTMnFXh0DZr98Ra7vV0-LdW4Qcee86ZX_3P094__Y3zVWU2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation</title><source>IEEE Xplore All Conference Series</source><creator>Cho, Sanghyeon ; Kang, Bogyeong ; Heo, Keun-Soo ; Jo, EunJung ; Kam, Tae-Eui</creator><creatorcontrib>Cho, Sanghyeon ; Kang, Bogyeong ; Heo, Keun-Soo ; Jo, EunJung ; Kam, Tae-Eui</creatorcontrib><description>In addressing the risk of blindness caused by glaucoma, precise and rapid segmentation of the optic disc and cup is vital for early detection and monitoring. However, manual segmentation, the standard approach, is inefficient and subjective, varying with expert experience and expertise. To overcome this limitation, developing automated segmentation methods is essential. Despite advancements in deep learning in this field, performance declines when applied across different domains, impeding practical use. Previous studies have struggled to preserve the structural information of source images and overlooked variations in the visual characteristics of fundus images even within the same center. To this end, we propose an effective image-level unsupervised domain adaptation (UDA) framework to enhance optic disc and cup segmentation. This framework generates pseudo-target domain images via image-to-image translation from source domain images. It addresses structural preservation challenges by incorporating a spatially correlative loss in the QS-Attn translation model. Furthermore, we use multi-view image translation with CycleGAN to enhance the visual diversity of the translated images, benefiting the segmentation model. The synergy of these models produces a robust training set, improving the performance of the segmentation model. Our experiments on the RIGA+ dataset demonstrate that our framework outperforms current state-of-the-art methods in the segmentation performance.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9798350313338</identifier><identifier>DOI: 10.1109/ISBI56570.2024.10635127</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Biological system modeling ; Biomedical optical imaging ; Image segmentation ; Medical image segmentation ; Multi-view image translation ; Optic disc and cup ; Optical losses ; Training ; Unsupervised domain adaptation ; Visualization</subject><ispartof>2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10635127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10635127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Sanghyeon</creatorcontrib><creatorcontrib>Kang, Bogyeong</creatorcontrib><creatorcontrib>Heo, Keun-Soo</creatorcontrib><creatorcontrib>Jo, EunJung</creatorcontrib><creatorcontrib>Kam, Tae-Eui</creatorcontrib><title>Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation</title><title>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>In addressing the risk of blindness caused by glaucoma, precise and rapid segmentation of the optic disc and cup is vital for early detection and monitoring. However, manual segmentation, the standard approach, is inefficient and subjective, varying with expert experience and expertise. To overcome this limitation, developing automated segmentation methods is essential. Despite advancements in deep learning in this field, performance declines when applied across different domains, impeding practical use. Previous studies have struggled to preserve the structural information of source images and overlooked variations in the visual characteristics of fundus images even within the same center. To this end, we propose an effective image-level unsupervised domain adaptation (UDA) framework to enhance optic disc and cup segmentation. This framework generates pseudo-target domain images via image-to-image translation from source domain images. It addresses structural preservation challenges by incorporating a spatially correlative loss in the QS-Attn translation model. Furthermore, we use multi-view image translation with CycleGAN to enhance the visual diversity of the translated images, benefiting the segmentation model. The synergy of these models produces a robust training set, improving the performance of the segmentation model. Our experiments on the RIGA+ dataset demonstrate that our framework outperforms current state-of-the-art methods in the segmentation performance.</description><subject>Adaptation models</subject><subject>Biological system modeling</subject><subject>Biomedical optical imaging</subject><subject>Image segmentation</subject><subject>Medical image segmentation</subject><subject>Multi-view image translation</subject><subject>Optic disc and cup</subject><subject>Optical losses</subject><subject>Training</subject><subject>Unsupervised domain adaptation</subject><subject>Visualization</subject><issn>1945-8452</issn><isbn>9798350313338</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFT91KwzAYjYLgcH0Dwe8FWpMmWdvLuU22C3FQ9XaE9JuLrGnIj-KF725xeu25OXD-4BByw2jBGG1uN-3dRs5kRYuSlqJgdMYlK6szkjVVU3NJOeOc1-dkwhoh81rI8pJkIbzREZUQnIoJ-VrZg7IaO2ijTzomj7D1GNC_q2gGC8p28JCO0eQvBj9g7pwflD6AsfBsQ3Jj0ISxvhx6NWrzTrl4au4HD48uGg1LE_TP0CI5aPG1R3vKTMnFXh0DZr98Ra7vV0-LdW4Qcee86ZX_3P094__Y3zVWU2A</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Cho, Sanghyeon</creator><creator>Kang, Bogyeong</creator><creator>Heo, Keun-Soo</creator><creator>Jo, EunJung</creator><creator>Kam, Tae-Eui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240527</creationdate><title>Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation</title><author>Cho, Sanghyeon ; Kang, Bogyeong ; Heo, Keun-Soo ; Jo, EunJung ; Kam, Tae-Eui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106351273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Biological system modeling</topic><topic>Biomedical optical imaging</topic><topic>Image segmentation</topic><topic>Medical image segmentation</topic><topic>Multi-view image translation</topic><topic>Optic disc and cup</topic><topic>Optical losses</topic><topic>Training</topic><topic>Unsupervised domain adaptation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sanghyeon</creatorcontrib><creatorcontrib>Kang, Bogyeong</creatorcontrib><creatorcontrib>Heo, Keun-Soo</creatorcontrib><creatorcontrib>Jo, EunJung</creatorcontrib><creatorcontrib>Kam, Tae-Eui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Sanghyeon</au><au>Kang, Bogyeong</au><au>Heo, Keun-Soo</au><au>Jo, EunJung</au><au>Kam, Tae-Eui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation</atitle><btitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2024-05-27</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>9798350313338</eisbn><abstract>In addressing the risk of blindness caused by glaucoma, precise and rapid segmentation of the optic disc and cup is vital for early detection and monitoring. However, manual segmentation, the standard approach, is inefficient and subjective, varying with expert experience and expertise. To overcome this limitation, developing automated segmentation methods is essential. Despite advancements in deep learning in this field, performance declines when applied across different domains, impeding practical use. Previous studies have struggled to preserve the structural information of source images and overlooked variations in the visual characteristics of fundus images even within the same center. To this end, we propose an effective image-level unsupervised domain adaptation (UDA) framework to enhance optic disc and cup segmentation. This framework generates pseudo-target domain images via image-to-image translation from source domain images. It addresses structural preservation challenges by incorporating a spatially correlative loss in the QS-Attn translation model. Furthermore, we use multi-view image translation with CycleGAN to enhance the visual diversity of the translated images, benefiting the segmentation model. The synergy of these models produces a robust training set, improving the performance of the segmentation model. Our experiments on the RIGA+ dataset demonstrate that our framework outperforms current state-of-the-art methods in the segmentation performance.</abstract><pub>IEEE</pub><doi>10.1109/ISBI56570.2024.10635127</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-5
issn 1945-8452
language eng
recordid cdi_ieee_primary_10635127
source IEEE Xplore All Conference Series
subjects Adaptation models
Biological system modeling
Biomedical optical imaging
Image segmentation
Medical image segmentation
Multi-view image translation
Optic disc and cup
Optical losses
Training
Unsupervised domain adaptation
Visualization
title Enhanced Structure Preservation and Multi-View Approach in Unsupervised Domain Adaptation for Optic Disc and Cup Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20Structure%20Preservation%20and%20Multi-View%20Approach%20in%20Unsupervised%20Domain%20Adaptation%20for%20Optic%20Disc%20and%20Cup%20Segmentation&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Cho,%20Sanghyeon&rft.date=2024-05-27&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI56570.2024.10635127&rft.eisbn=9798350313338&rft_dat=%3Cieee_CHZPO%3E10635127%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106351273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10635127&rfr_iscdi=true