Loading…

Boosting Skull-Stripping Performance for Pediatric Brain Images

Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain dev...

Full description

Saved in:
Bibliographic Details
Published in:2024 IEEE International Symposium on Biomedical Imaging (ISBI) 2024-05, Vol.2024, p.1-5
Main Authors: Kelley, William, Ngo, Nathan, Dalca, Adrian V., Fischl, Bruce, Zollei, Lilla, Hoffmann, Malte
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
container_volume 2024
creator Kelley, William
Ngo, Nathan
Dalca, Adrian V.
Fischl, Bruce
Zollei, Lilla
Hoffmann, Malte
description Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the
doi_str_mv 10.1109/ISBI56570.2024.10635307
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10635307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10635307</ieee_id><sourcerecordid>3113745844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1967-e850bbca0e86fe84f8c23c306d844699c5f53ed2410bee6c328143786c0cc40a3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhVdRbKn9B6J59CV1N7PXJ7HFS6CgUH0Om82krOZmtnnw3xtp67zMOZyPAzOE3DC6YIyau3SzTIUUii4SmvAFoxIEUHVC5kYZDYICAwB9SqbMcBFrLpKzg1Ym0RMyD-GTjqM4B8ovyAQMKMYVTMn9sm3DzjfbaPM1VFW82fW-6_78G_Zl29e2cRiNYvSFt2PqomVvfROltd1iuCTnpa0Czg97Rj6eHt9XL_H69TldPaxjz4xUMWpB89xZilqWqHmpXQIOqCw059IYJ0oBWCSc0RxROkg046C0dNQ5Ti3MyO2-t-vb7wHDLqt9cFhVtsF2CBkwBoqLsW1Erw_okNdYZF3va9v_ZMejR-BqD3hE_I-Pb4VfBQRl6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113745844</pqid></control><display><type>article</type><title>Boosting Skull-Stripping Performance for Pediatric Brain Images</title><source>IEEE Xplore All Conference Series</source><creator>Kelley, William ; Ngo, Nathan ; Dalca, Adrian V. ; Fischl, Bruce ; Zollei, Lilla ; Hoffmann, Malte</creator><creatorcontrib>Kelley, William ; Ngo, Nathan ; Dalca, Adrian V. ; Fischl, Bruce ; Zollei, Lilla ; Hoffmann, Malte</creatorcontrib><description>Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the &lt;1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.</description><identifier>ISSN: 1945-7928</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9798350313338</identifier><identifier>DOI: 10.1109/ISBI56570.2024.10635307</identifier><identifier>PMID: 39371473</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; brain extraction ; Brain modeling ; Buildings ; Data acquisition ; infant ; machine learning ; Magnetic resonance imaging ; newborn ; pediatric MRI ; Runtime ; skull-stripping ; Sociology ; toddler</subject><ispartof>2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024-05, Vol.2024, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10635307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27900,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10635307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39371473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, William</creatorcontrib><creatorcontrib>Ngo, Nathan</creatorcontrib><creatorcontrib>Dalca, Adrian V.</creatorcontrib><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Zollei, Lilla</creatorcontrib><creatorcontrib>Hoffmann, Malte</creatorcontrib><title>Boosting Skull-Stripping Performance for Pediatric Brain Images</title><title>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><description>Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the &lt;1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.</description><subject>Biological system modeling</subject><subject>brain extraction</subject><subject>Brain modeling</subject><subject>Buildings</subject><subject>Data acquisition</subject><subject>infant</subject><subject>machine learning</subject><subject>Magnetic resonance imaging</subject><subject>newborn</subject><subject>pediatric MRI</subject><subject>Runtime</subject><subject>skull-stripping</subject><subject>Sociology</subject><subject>toddler</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>9798350313338</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNo9kFtLw0AQhVdRbKn9B6J59CV1N7PXJ7HFS6CgUH0Om82krOZmtnnw3xtp67zMOZyPAzOE3DC6YIyau3SzTIUUii4SmvAFoxIEUHVC5kYZDYICAwB9SqbMcBFrLpKzg1Ym0RMyD-GTjqM4B8ovyAQMKMYVTMn9sm3DzjfbaPM1VFW82fW-6_78G_Zl29e2cRiNYvSFt2PqomVvfROltd1iuCTnpa0Czg97Rj6eHt9XL_H69TldPaxjz4xUMWpB89xZilqWqHmpXQIOqCw059IYJ0oBWCSc0RxROkg046C0dNQ5Ti3MyO2-t-vb7wHDLqt9cFhVtsF2CBkwBoqLsW1Erw_okNdYZF3va9v_ZMejR-BqD3hE_I-Pb4VfBQRl6w</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Kelley, William</creator><creator>Ngo, Nathan</creator><creator>Dalca, Adrian V.</creator><creator>Fischl, Bruce</creator><creator>Zollei, Lilla</creator><creator>Hoffmann, Malte</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Boosting Skull-Stripping Performance for Pediatric Brain Images</title><author>Kelley, William ; Ngo, Nathan ; Dalca, Adrian V. ; Fischl, Bruce ; Zollei, Lilla ; Hoffmann, Malte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1967-e850bbca0e86fe84f8c23c306d844699c5f53ed2410bee6c328143786c0cc40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological system modeling</topic><topic>brain extraction</topic><topic>Brain modeling</topic><topic>Buildings</topic><topic>Data acquisition</topic><topic>infant</topic><topic>machine learning</topic><topic>Magnetic resonance imaging</topic><topic>newborn</topic><topic>pediatric MRI</topic><topic>Runtime</topic><topic>skull-stripping</topic><topic>Sociology</topic><topic>toddler</topic><toplevel>online_resources</toplevel><creatorcontrib>Kelley, William</creatorcontrib><creatorcontrib>Ngo, Nathan</creatorcontrib><creatorcontrib>Dalca, Adrian V.</creatorcontrib><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Zollei, Lilla</creatorcontrib><creatorcontrib>Hoffmann, Malte</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kelley, William</au><au>Ngo, Nathan</au><au>Dalca, Adrian V.</au><au>Fischl, Bruce</au><au>Zollei, Lilla</au><au>Hoffmann, Malte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Skull-Stripping Performance for Pediatric Brain Images</atitle><jtitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle><stitle>ISBI</stitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><date>2024-05</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><eisbn>9798350313338</eisbn><abstract>Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the &lt;1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39371473</pmid><doi>10.1109/ISBI56570.2024.10635307</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024-05, Vol.2024, p.1-5
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_10635307
source IEEE Xplore All Conference Series
subjects Biological system modeling
brain extraction
Brain modeling
Buildings
Data acquisition
infant
machine learning
Magnetic resonance imaging
newborn
pediatric MRI
Runtime
skull-stripping
Sociology
toddler
title Boosting Skull-Stripping Performance for Pediatric Brain Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Skull-Stripping%20Performance%20for%20Pediatric%20Brain%20Images&rft.jtitle=2024%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Kelley,%20William&rft.date=2024-05&rft.volume=2024&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1945-7928&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI56570.2024.10635307&rft.eisbn=9798350313338&rft_dat=%3Cproquest_CHZPO%3E3113745844%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1967-e850bbca0e86fe84f8c23c306d844699c5f53ed2410bee6c328143786c0cc40a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113745844&rft_id=info:pmid/39371473&rft_ieee_id=10635307&rfr_iscdi=true