Loading…

Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings

Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involv...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdelhalim, I., Alksas, A., Balaha, H. M., Badawy, M., El-Ghar, M. Abou, Alghamdi, N. S., Ghazal, M., Contractor, S., Bogaert, E. V., Gondim, D., Silva, S. R., Khalifa, F., El-Baz, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Abdelhalim, I.
Alksas, A.
Balaha, H. M.
Badawy, M.
El-Ghar, M. Abou
Alghamdi, N. S.
Ghazal, M.
Contractor, S.
Bogaert, E. V.
Gondim, D.
Silva, S. R.
Khalifa, F.
El-Baz, A.
description Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.
doi_str_mv 10.1109/ISBI56570.2024.10635491
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10635491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10635491</ieee_id><sourcerecordid>10635491</sourcerecordid><originalsourceid>FETCH-ieee_primary_106354913</originalsourceid><addsrcrecordid>eNqFjt8OwTAYxUsiIewNJPoCpl1bW90hxO4kdivS2IeKdfJ1JDy9LeHaufldnD85hIw4CzlnepLuFqmaqpiFEYtkyNlUKKl5iwQ61olQTHAhRNImPa6lGidSRV0SeH9ltWIpBZM9sp_nT-OO1p3pFtCXztzsG3K6xdJXpgK6rF1Aml0Azf1VE8vH-UI3JRZNmGYIpirAVbOmU1jfTK2ty2v6AemczM1D8GWfDNerbLkZWwA43NEWBl-H33Pxx_4AyLdICw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><source>IEEE Xplore All Conference Series</source><creator>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</creator><creatorcontrib>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</creatorcontrib><description>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9798350313338</identifier><identifier>DOI: 10.1109/ISBI56570.2024.10635491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clinical Markers ; Data mining ; Deep Learning ; Demographic Markers ; Feature extraction ; Hormonal Therapy ; Magnetic resonance imaging ; Medical treatment ; Pathology Markers ; Prediction algorithms ; Prostate Cancer ; Prostate-Specific Antigen ; Sensitivity ; Soft sensors ; Transfer Learning</subject><ispartof>2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10635491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10635491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdelhalim, I.</creatorcontrib><creatorcontrib>Alksas, A.</creatorcontrib><creatorcontrib>Balaha, H. M.</creatorcontrib><creatorcontrib>Badawy, M.</creatorcontrib><creatorcontrib>El-Ghar, M. Abou</creatorcontrib><creatorcontrib>Alghamdi, N. S.</creatorcontrib><creatorcontrib>Ghazal, M.</creatorcontrib><creatorcontrib>Contractor, S.</creatorcontrib><creatorcontrib>Bogaert, E. V.</creatorcontrib><creatorcontrib>Gondim, D.</creatorcontrib><creatorcontrib>Silva, S. R.</creatorcontrib><creatorcontrib>Khalifa, F.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><title>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</description><subject>Clinical Markers</subject><subject>Data mining</subject><subject>Deep Learning</subject><subject>Demographic Markers</subject><subject>Feature extraction</subject><subject>Hormonal Therapy</subject><subject>Magnetic resonance imaging</subject><subject>Medical treatment</subject><subject>Pathology Markers</subject><subject>Prediction algorithms</subject><subject>Prostate Cancer</subject><subject>Prostate-Specific Antigen</subject><subject>Sensitivity</subject><subject>Soft sensors</subject><subject>Transfer Learning</subject><issn>1945-8452</issn><isbn>9798350313338</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjt8OwTAYxUsiIewNJPoCpl1bW90hxO4kdivS2IeKdfJ1JDy9LeHaufldnD85hIw4CzlnepLuFqmaqpiFEYtkyNlUKKl5iwQ61olQTHAhRNImPa6lGidSRV0SeH9ltWIpBZM9sp_nT-OO1p3pFtCXztzsG3K6xdJXpgK6rF1Aml0Azf1VE8vH-UI3JRZNmGYIpirAVbOmU1jfTK2ty2v6AemczM1D8GWfDNerbLkZWwA43NEWBl-H33Pxx_4AyLdICw</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Abdelhalim, I.</creator><creator>Alksas, A.</creator><creator>Balaha, H. M.</creator><creator>Badawy, M.</creator><creator>El-Ghar, M. Abou</creator><creator>Alghamdi, N. S.</creator><creator>Ghazal, M.</creator><creator>Contractor, S.</creator><creator>Bogaert, E. V.</creator><creator>Gondim, D.</creator><creator>Silva, S. R.</creator><creator>Khalifa, F.</creator><creator>El-Baz, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240527</creationdate><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><author>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106354913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clinical Markers</topic><topic>Data mining</topic><topic>Deep Learning</topic><topic>Demographic Markers</topic><topic>Feature extraction</topic><topic>Hormonal Therapy</topic><topic>Magnetic resonance imaging</topic><topic>Medical treatment</topic><topic>Pathology Markers</topic><topic>Prediction algorithms</topic><topic>Prostate Cancer</topic><topic>Prostate-Specific Antigen</topic><topic>Sensitivity</topic><topic>Soft sensors</topic><topic>Transfer Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdelhalim, I.</creatorcontrib><creatorcontrib>Alksas, A.</creatorcontrib><creatorcontrib>Balaha, H. M.</creatorcontrib><creatorcontrib>Badawy, M.</creatorcontrib><creatorcontrib>El-Ghar, M. Abou</creatorcontrib><creatorcontrib>Alghamdi, N. S.</creatorcontrib><creatorcontrib>Ghazal, M.</creatorcontrib><creatorcontrib>Contractor, S.</creatorcontrib><creatorcontrib>Bogaert, E. V.</creatorcontrib><creatorcontrib>Gondim, D.</creatorcontrib><creatorcontrib>Silva, S. R.</creatorcontrib><creatorcontrib>Khalifa, F.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdelhalim, I.</au><au>Alksas, A.</au><au>Balaha, H. M.</au><au>Badawy, M.</au><au>El-Ghar, M. Abou</au><au>Alghamdi, N. S.</au><au>Ghazal, M.</au><au>Contractor, S.</au><au>Bogaert, E. V.</au><au>Gondim, D.</au><au>Silva, S. R.</au><au>Khalifa, F.</au><au>El-Baz, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</atitle><btitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2024-05-27</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1945-8452</eissn><eisbn>9798350313338</eisbn><abstract>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</abstract><pub>IEEE</pub><doi>10.1109/ISBI56570.2024.10635491</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-4
issn 1945-8452
language eng
recordid cdi_ieee_primary_10635491
source IEEE Xplore All Conference Series
subjects Clinical Markers
Data mining
Deep Learning
Demographic Markers
Feature extraction
Hormonal Therapy
Magnetic resonance imaging
Medical treatment
Pathology Markers
Prediction algorithms
Prostate Cancer
Prostate-Specific Antigen
Sensitivity
Soft sensors
Transfer Learning
title Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advancing%20Personalized%20Prostate%20Cancer%20Therapy%20Through%20Hormonal%20Treatment:%20Promising%20Findings&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Abdelhalim,%20I.&rft.date=2024-05-27&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI56570.2024.10635491&rft.eisbn=9798350313338&rft_dat=%3Cieee_CHZPO%3E10635491%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106354913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10635491&rfr_iscdi=true