Loading…
Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings
Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involv...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Abdelhalim, I. Alksas, A. Balaha, H. M. Badawy, M. El-Ghar, M. Abou Alghamdi, N. S. Ghazal, M. Contractor, S. Bogaert, E. V. Gondim, D. Silva, S. R. Khalifa, F. El-Baz, A. |
description | Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC. |
doi_str_mv | 10.1109/ISBI56570.2024.10635491 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10635491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10635491</ieee_id><sourcerecordid>10635491</sourcerecordid><originalsourceid>FETCH-ieee_primary_106354913</originalsourceid><addsrcrecordid>eNqFjt8OwTAYxUsiIewNJPoCpl1bW90hxO4kdivS2IeKdfJ1JDy9LeHaufldnD85hIw4CzlnepLuFqmaqpiFEYtkyNlUKKl5iwQ61olQTHAhRNImPa6lGidSRV0SeH9ltWIpBZM9sp_nT-OO1p3pFtCXztzsG3K6xdJXpgK6rF1Aml0Azf1VE8vH-UI3JRZNmGYIpirAVbOmU1jfTK2ty2v6AemczM1D8GWfDNerbLkZWwA43NEWBl-H33Pxx_4AyLdICw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><source>IEEE Xplore All Conference Series</source><creator>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</creator><creatorcontrib>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</creatorcontrib><description>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9798350313338</identifier><identifier>DOI: 10.1109/ISBI56570.2024.10635491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clinical Markers ; Data mining ; Deep Learning ; Demographic Markers ; Feature extraction ; Hormonal Therapy ; Magnetic resonance imaging ; Medical treatment ; Pathology Markers ; Prediction algorithms ; Prostate Cancer ; Prostate-Specific Antigen ; Sensitivity ; Soft sensors ; Transfer Learning</subject><ispartof>2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10635491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10635491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdelhalim, I.</creatorcontrib><creatorcontrib>Alksas, A.</creatorcontrib><creatorcontrib>Balaha, H. M.</creatorcontrib><creatorcontrib>Badawy, M.</creatorcontrib><creatorcontrib>El-Ghar, M. Abou</creatorcontrib><creatorcontrib>Alghamdi, N. S.</creatorcontrib><creatorcontrib>Ghazal, M.</creatorcontrib><creatorcontrib>Contractor, S.</creatorcontrib><creatorcontrib>Bogaert, E. V.</creatorcontrib><creatorcontrib>Gondim, D.</creatorcontrib><creatorcontrib>Silva, S. R.</creatorcontrib><creatorcontrib>Khalifa, F.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><title>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</description><subject>Clinical Markers</subject><subject>Data mining</subject><subject>Deep Learning</subject><subject>Demographic Markers</subject><subject>Feature extraction</subject><subject>Hormonal Therapy</subject><subject>Magnetic resonance imaging</subject><subject>Medical treatment</subject><subject>Pathology Markers</subject><subject>Prediction algorithms</subject><subject>Prostate Cancer</subject><subject>Prostate-Specific Antigen</subject><subject>Sensitivity</subject><subject>Soft sensors</subject><subject>Transfer Learning</subject><issn>1945-8452</issn><isbn>9798350313338</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjt8OwTAYxUsiIewNJPoCpl1bW90hxO4kdivS2IeKdfJ1JDy9LeHaufldnD85hIw4CzlnepLuFqmaqpiFEYtkyNlUKKl5iwQ61olQTHAhRNImPa6lGidSRV0SeH9ltWIpBZM9sp_nT-OO1p3pFtCXztzsG3K6xdJXpgK6rF1Aml0Azf1VE8vH-UI3JRZNmGYIpirAVbOmU1jfTK2ty2v6AemczM1D8GWfDNerbLkZWwA43NEWBl-H33Pxx_4AyLdICw</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Abdelhalim, I.</creator><creator>Alksas, A.</creator><creator>Balaha, H. M.</creator><creator>Badawy, M.</creator><creator>El-Ghar, M. Abou</creator><creator>Alghamdi, N. S.</creator><creator>Ghazal, M.</creator><creator>Contractor, S.</creator><creator>Bogaert, E. V.</creator><creator>Gondim, D.</creator><creator>Silva, S. R.</creator><creator>Khalifa, F.</creator><creator>El-Baz, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240527</creationdate><title>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</title><author>Abdelhalim, I. ; Alksas, A. ; Balaha, H. M. ; Badawy, M. ; El-Ghar, M. Abou ; Alghamdi, N. S. ; Ghazal, M. ; Contractor, S. ; Bogaert, E. V. ; Gondim, D. ; Silva, S. R. ; Khalifa, F. ; El-Baz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106354913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clinical Markers</topic><topic>Data mining</topic><topic>Deep Learning</topic><topic>Demographic Markers</topic><topic>Feature extraction</topic><topic>Hormonal Therapy</topic><topic>Magnetic resonance imaging</topic><topic>Medical treatment</topic><topic>Pathology Markers</topic><topic>Prediction algorithms</topic><topic>Prostate Cancer</topic><topic>Prostate-Specific Antigen</topic><topic>Sensitivity</topic><topic>Soft sensors</topic><topic>Transfer Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdelhalim, I.</creatorcontrib><creatorcontrib>Alksas, A.</creatorcontrib><creatorcontrib>Balaha, H. M.</creatorcontrib><creatorcontrib>Badawy, M.</creatorcontrib><creatorcontrib>El-Ghar, M. Abou</creatorcontrib><creatorcontrib>Alghamdi, N. S.</creatorcontrib><creatorcontrib>Ghazal, M.</creatorcontrib><creatorcontrib>Contractor, S.</creatorcontrib><creatorcontrib>Bogaert, E. V.</creatorcontrib><creatorcontrib>Gondim, D.</creatorcontrib><creatorcontrib>Silva, S. R.</creatorcontrib><creatorcontrib>Khalifa, F.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdelhalim, I.</au><au>Alksas, A.</au><au>Balaha, H. M.</au><au>Badawy, M.</au><au>El-Ghar, M. Abou</au><au>Alghamdi, N. S.</au><au>Ghazal, M.</au><au>Contractor, S.</au><au>Bogaert, E. V.</au><au>Gondim, D.</au><au>Silva, S. R.</au><au>Khalifa, F.</au><au>El-Baz, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings</atitle><btitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2024-05-27</date><risdate>2024</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1945-8452</eissn><eisbn>9798350313338</eisbn><abstract>Personalized prediction of hormonal therapy response in Prostate Cancer (PC) is crucial for planning effective treatment. In this paper, we propose a novel framework to combine MRI imaging, pathology, clinical, and demographic markers, aiming to develop a robust prediction system. The process involves sequential steps: preprocessing, prostate/tumor localization, feature extraction, and classification. Using the Multibranch Multimodality MRI Feature Extractor (M3FE), a deep learning technique, we extract salient information from MRI images. The final step employs a weighted sum fusion algorithm to combine MRI features with other markers. Testing on a dataset of 39 patients demonstrates that the framework effectively predicts hormonal therapy effects on PC with 97.5% sensitivity and 100% specificity. This highlights the potential of using radiomics, which involves the analysis of image features, along with other data sources for the precise prediction of hormonal therapy responses in PC.</abstract><pub>IEEE</pub><doi>10.1109/ISBI56570.2024.10635491</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-4 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_10635491 |
source | IEEE Xplore All Conference Series |
subjects | Clinical Markers Data mining Deep Learning Demographic Markers Feature extraction Hormonal Therapy Magnetic resonance imaging Medical treatment Pathology Markers Prediction algorithms Prostate Cancer Prostate-Specific Antigen Sensitivity Soft sensors Transfer Learning |
title | Advancing Personalized Prostate Cancer Therapy Through Hormonal Treatment: Promising Findings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advancing%20Personalized%20Prostate%20Cancer%20Therapy%20Through%20Hormonal%20Treatment:%20Promising%20Findings&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Abdelhalim,%20I.&rft.date=2024-05-27&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI56570.2024.10635491&rft.eisbn=9798350313338&rft_dat=%3Cieee_CHZPO%3E10635491%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106354913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10635491&rfr_iscdi=true |