Loading…
Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer
Programmed cell death-ligand 1 (PD-L1) status determination involves surgical or biopsied tumor specimens, which must be collected through invasive procedures that carry a risk of morbidity. Therefore, automating the evaluation of PD-L1 expression from medical images is of paramount importance for p...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Da-Ano, R. Tankyevych, O. Andrade-Miranda, G. Conze, P.-H. Le Rest, C. Cheze Visvikis, D. |
description | Programmed cell death-ligand 1 (PD-L1) status determination involves surgical or biopsied tumor specimens, which must be collected through invasive procedures that carry a risk of morbidity. Therefore, automating the evaluation of PD-L1 expression from medical images is of paramount importance for patients with lung cancer. This study investigates a variety of deep learning architectures as well as the fusion of non-invasive computed tomography (CT) and positron emission tomography (PET) scans to predict the PD-L1 status. ResNet, DenseNet and EfficientNet models are compared and optimized using different combinations: CT only, PET only and CT/PET fusion. Models are evaluated using the areas under the receiver operating characteristic curves (AUCs) based from their 95% confidence intervals. Results reveal that PET/CT fusion outperforms their independent counterparts whatever the architecture. Further, early fusion demonstrates encouraging results for classifying PD-L1. Such noninvasive, high-throughput deep learning approach can be used as a powerful alternative to broad diagnostic workups, with applications for immunotherapy eligibility assessment. |
doi_str_mv | 10.1109/ISBI56570.2024.10635750 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10635750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10635750</ieee_id><sourcerecordid>10635750</sourcerecordid><originalsourceid>FETCH-ieee_primary_106357503</originalsourceid><addsrcrecordid>eNqFjr0KwjAURqMgKNo3ELwv0HrTJLYdtSoKKgW7S7BRIrWV_Ay-vQo6-y1nOGf4CJlQjCjFbLo9LrZiJhKMYox5RHHGRCKwQ4IsyVImkFHGWNolA5pxEaZcxH0SWHvD9xLOGfIBOex97XS4bytZQ7Eqp3kJa29128ClNTD3rr1LpyooluGOwtFJ5y0URlX67D6VbmDnmyvksjkrMyK9i6ytCr4ckvF6VeabUCulTg-j79I8T7-r7I9-ARb3P-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer</title><source>IEEE Xplore All Conference Series</source><creator>Da-Ano, R. ; Tankyevych, O. ; Andrade-Miranda, G. ; Conze, P.-H. ; Le Rest, C. Cheze ; Visvikis, D.</creator><creatorcontrib>Da-Ano, R. ; Tankyevych, O. ; Andrade-Miranda, G. ; Conze, P.-H. ; Le Rest, C. Cheze ; Visvikis, D.</creatorcontrib><description>Programmed cell death-ligand 1 (PD-L1) status determination involves surgical or biopsied tumor specimens, which must be collected through invasive procedures that carry a risk of morbidity. Therefore, automating the evaluation of PD-L1 expression from medical images is of paramount importance for patients with lung cancer. This study investigates a variety of deep learning architectures as well as the fusion of non-invasive computed tomography (CT) and positron emission tomography (PET) scans to predict the PD-L1 status. ResNet, DenseNet and EfficientNet models are compared and optimized using different combinations: CT only, PET only and CT/PET fusion. Models are evaluated using the areas under the receiver operating characteristic curves (AUCs) based from their 95% confidence intervals. Results reveal that PET/CT fusion outperforms their independent counterparts whatever the architecture. Further, early fusion demonstrates encouraging results for classifying PD-L1. Such noninvasive, high-throughput deep learning approach can be used as a powerful alternative to broad diagnostic workups, with applications for immunotherapy eligibility assessment.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9798350313338</identifier><identifier>DOI: 10.1109/ISBI56570.2024.10635750</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computed tomography ; Computer architecture ; Deep learning ; Immunotherapy ; Lung cancer ; multi-modal fusion ; PET/CT ; Surgery</subject><ispartof>2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10635750$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10635750$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Da-Ano, R.</creatorcontrib><creatorcontrib>Tankyevych, O.</creatorcontrib><creatorcontrib>Andrade-Miranda, G.</creatorcontrib><creatorcontrib>Conze, P.-H.</creatorcontrib><creatorcontrib>Le Rest, C. Cheze</creatorcontrib><creatorcontrib>Visvikis, D.</creatorcontrib><title>Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer</title><title>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Programmed cell death-ligand 1 (PD-L1) status determination involves surgical or biopsied tumor specimens, which must be collected through invasive procedures that carry a risk of morbidity. Therefore, automating the evaluation of PD-L1 expression from medical images is of paramount importance for patients with lung cancer. This study investigates a variety of deep learning architectures as well as the fusion of non-invasive computed tomography (CT) and positron emission tomography (PET) scans to predict the PD-L1 status. ResNet, DenseNet and EfficientNet models are compared and optimized using different combinations: CT only, PET only and CT/PET fusion. Models are evaluated using the areas under the receiver operating characteristic curves (AUCs) based from their 95% confidence intervals. Results reveal that PET/CT fusion outperforms their independent counterparts whatever the architecture. Further, early fusion demonstrates encouraging results for classifying PD-L1. Such noninvasive, high-throughput deep learning approach can be used as a powerful alternative to broad diagnostic workups, with applications for immunotherapy eligibility assessment.</description><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Immunotherapy</subject><subject>Lung cancer</subject><subject>multi-modal fusion</subject><subject>PET/CT</subject><subject>Surgery</subject><issn>1945-8452</issn><isbn>9798350313338</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjr0KwjAURqMgKNo3ELwv0HrTJLYdtSoKKgW7S7BRIrWV_Ay-vQo6-y1nOGf4CJlQjCjFbLo9LrZiJhKMYox5RHHGRCKwQ4IsyVImkFHGWNolA5pxEaZcxH0SWHvD9xLOGfIBOex97XS4bytZQ7Eqp3kJa29128ClNTD3rr1LpyooluGOwtFJ5y0URlX67D6VbmDnmyvksjkrMyK9i6ytCr4ckvF6VeabUCulTg-j79I8T7-r7I9-ARb3P-Y</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Da-Ano, R.</creator><creator>Tankyevych, O.</creator><creator>Andrade-Miranda, G.</creator><creator>Conze, P.-H.</creator><creator>Le Rest, C. Cheze</creator><creator>Visvikis, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240527</creationdate><title>Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer</title><author>Da-Ano, R. ; Tankyevych, O. ; Andrade-Miranda, G. ; Conze, P.-H. ; Le Rest, C. Cheze ; Visvikis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106357503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Immunotherapy</topic><topic>Lung cancer</topic><topic>multi-modal fusion</topic><topic>PET/CT</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Da-Ano, R.</creatorcontrib><creatorcontrib>Tankyevych, O.</creatorcontrib><creatorcontrib>Andrade-Miranda, G.</creatorcontrib><creatorcontrib>Conze, P.-H.</creatorcontrib><creatorcontrib>Le Rest, C. Cheze</creatorcontrib><creatorcontrib>Visvikis, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Da-Ano, R.</au><au>Tankyevych, O.</au><au>Andrade-Miranda, G.</au><au>Conze, P.-H.</au><au>Le Rest, C. Cheze</au><au>Visvikis, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer</atitle><btitle>2024 IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2024-05-27</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>9798350313338</eisbn><abstract>Programmed cell death-ligand 1 (PD-L1) status determination involves surgical or biopsied tumor specimens, which must be collected through invasive procedures that carry a risk of morbidity. Therefore, automating the evaluation of PD-L1 expression from medical images is of paramount importance for patients with lung cancer. This study investigates a variety of deep learning architectures as well as the fusion of non-invasive computed tomography (CT) and positron emission tomography (PET) scans to predict the PD-L1 status. ResNet, DenseNet and EfficientNet models are compared and optimized using different combinations: CT only, PET only and CT/PET fusion. Models are evaluated using the areas under the receiver operating characteristic curves (AUCs) based from their 95% confidence intervals. Results reveal that PET/CT fusion outperforms their independent counterparts whatever the architecture. Further, early fusion demonstrates encouraging results for classifying PD-L1. Such noninvasive, high-throughput deep learning approach can be used as a powerful alternative to broad diagnostic workups, with applications for immunotherapy eligibility assessment.</abstract><pub>IEEE</pub><doi>10.1109/ISBI56570.2024.10635750</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024, p.1-5 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_10635750 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Computed tomography Computer architecture Deep learning Immunotherapy Lung cancer multi-modal fusion PET/CT Surgery |
title | Multi-Modal PET/CT Fusion for Automated PD-L1 Status Prediction in Lung Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Modal%20PET/CT%20Fusion%20for%20Automated%20PD-L1%20Status%20Prediction%20in%20Lung%20Cancer&rft.btitle=2024%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Da-Ano,%20R.&rft.date=2024-05-27&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI56570.2024.10635750&rft.eisbn=9798350313338&rft_dat=%3Cieee_CHZPO%3E10635750%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106357503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10635750&rfr_iscdi=true |