Loading…

PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm

Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations...

Full description

Saved in:
Bibliographic Details
Main Authors: Samaniego, Ann Louiella M., Layco, Shairille P., Remot, Nicole L., Bernabe, Daniella Gracielle G., Clavecilla, Karl Patrick R., Rosales, Marife A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 59
container_issue
container_start_page 54
container_title
container_volume
creator Samaniego, Ann Louiella M.
Layco, Shairille P.
Remot, Nicole L.
Bernabe, Daniella Gracielle G.
Clavecilla, Karl Patrick R.
Rosales, Marife A.
description Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.
doi_str_mv 10.1109/ICICoS62600.2024.10636913
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10636913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10636913</ieee_id><sourcerecordid>10636913</sourcerecordid><originalsourceid>FETCH-ieee_primary_106369133</originalsourceid><addsrcrecordid>eNqFzs1KAzEUBeAoCBadN3BxfYCON4nNjzsdtC2IHfAHXJWx3rZXZpIhaRXf3hZ07eosznfgCHEusZQS_cW0mlbx0SiDWCpUl6VEo42X-kAU3nqnR6jtyDlzKAbKGju06OyxKHL-QEStUHtnBuKtphxv4uYK6kQLzhwDTJrw3nJYQVzCA31BveaW-54DwV5DFTlkeM578tIsttsOxmkHKMFuCa-z-9mng-t2FRNv1t2pOFo2babiN0_E2d3tUzUZMhHN-8Rdk77nf_f1P_UPQH5I8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</creator><creatorcontrib>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</creatorcontrib><description>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</description><identifier>EISSN: 2767-7087</identifier><identifier>EISBN: 9798350375886</identifier><identifier>DOI: 10.1109/ICICoS62600.2024.10636913</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; artificial intelligence ; coin sorting ; Grippers ; PesoBot ; Reliability ; Robot kinematics ; Safety ; Training ; vacuum gripper ; Vacuum systems ; YOLOv8</subject><ispartof>2024 7th International Conference on Informatics and Computational Sciences (ICICoS), 2024, p.54-59</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10636913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10636913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Samaniego, Ann Louiella M.</creatorcontrib><creatorcontrib>Layco, Shairille P.</creatorcontrib><creatorcontrib>Remot, Nicole L.</creatorcontrib><creatorcontrib>Bernabe, Daniella Gracielle G.</creatorcontrib><creatorcontrib>Clavecilla, Karl Patrick R.</creatorcontrib><creatorcontrib>Rosales, Marife A.</creatorcontrib><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><title>2024 7th International Conference on Informatics and Computational Sciences (ICICoS)</title><addtitle>ICICoS</addtitle><description>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</description><subject>Accuracy</subject><subject>artificial intelligence</subject><subject>coin sorting</subject><subject>Grippers</subject><subject>PesoBot</subject><subject>Reliability</subject><subject>Robot kinematics</subject><subject>Safety</subject><subject>Training</subject><subject>vacuum gripper</subject><subject>Vacuum systems</subject><subject>YOLOv8</subject><issn>2767-7087</issn><isbn>9798350375886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzs1KAzEUBeAoCBadN3BxfYCON4nNjzsdtC2IHfAHXJWx3rZXZpIhaRXf3hZ07eosznfgCHEusZQS_cW0mlbx0SiDWCpUl6VEo42X-kAU3nqnR6jtyDlzKAbKGju06OyxKHL-QEStUHtnBuKtphxv4uYK6kQLzhwDTJrw3nJYQVzCA31BveaW-54DwV5DFTlkeM578tIsttsOxmkHKMFuCa-z-9mng-t2FRNv1t2pOFo2babiN0_E2d3tUzUZMhHN-8Rdk77nf_f1P_UPQH5I8g</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Samaniego, Ann Louiella M.</creator><creator>Layco, Shairille P.</creator><creator>Remot, Nicole L.</creator><creator>Bernabe, Daniella Gracielle G.</creator><creator>Clavecilla, Karl Patrick R.</creator><creator>Rosales, Marife A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240717</creationdate><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><author>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106369133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>artificial intelligence</topic><topic>coin sorting</topic><topic>Grippers</topic><topic>PesoBot</topic><topic>Reliability</topic><topic>Robot kinematics</topic><topic>Safety</topic><topic>Training</topic><topic>vacuum gripper</topic><topic>Vacuum systems</topic><topic>YOLOv8</topic><toplevel>online_resources</toplevel><creatorcontrib>Samaniego, Ann Louiella M.</creatorcontrib><creatorcontrib>Layco, Shairille P.</creatorcontrib><creatorcontrib>Remot, Nicole L.</creatorcontrib><creatorcontrib>Bernabe, Daniella Gracielle G.</creatorcontrib><creatorcontrib>Clavecilla, Karl Patrick R.</creatorcontrib><creatorcontrib>Rosales, Marife A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Samaniego, Ann Louiella M.</au><au>Layco, Shairille P.</au><au>Remot, Nicole L.</au><au>Bernabe, Daniella Gracielle G.</au><au>Clavecilla, Karl Patrick R.</au><au>Rosales, Marife A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</atitle><btitle>2024 7th International Conference on Informatics and Computational Sciences (ICICoS)</btitle><stitle>ICICoS</stitle><date>2024-07-17</date><risdate>2024</risdate><spage>54</spage><epage>59</epage><pages>54-59</pages><eissn>2767-7087</eissn><eisbn>9798350375886</eisbn><abstract>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</abstract><pub>IEEE</pub><doi>10.1109/ICICoS62600.2024.10636913</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-7087
ispartof 2024 7th International Conference on Informatics and Computational Sciences (ICICoS), 2024, p.54-59
issn 2767-7087
language eng
recordid cdi_ieee_primary_10636913
source IEEE Xplore All Conference Series
subjects Accuracy
artificial intelligence
coin sorting
Grippers
PesoBot
Reliability
Robot kinematics
Safety
Training
vacuum gripper
Vacuum systems
YOLOv8
title PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PesoBot:%20Precision%20Handling%20of%20New%20Philippine%20Peso%20Coins%20Using%20Vacuum%20Gripper%20and%20YOLOv8%20Algorithm&rft.btitle=2024%207th%20International%20Conference%20on%20Informatics%20and%20Computational%20Sciences%20(ICICoS)&rft.au=Samaniego,%20Ann%20Louiella%20M.&rft.date=2024-07-17&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.eissn=2767-7087&rft_id=info:doi/10.1109/ICICoS62600.2024.10636913&rft.eisbn=9798350375886&rft_dat=%3Cieee_CHZPO%3E10636913%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106369133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10636913&rfr_iscdi=true