Loading…
PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm
Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 59 |
container_issue | |
container_start_page | 54 |
container_title | |
container_volume | |
creator | Samaniego, Ann Louiella M. Layco, Shairille P. Remot, Nicole L. Bernabe, Daniella Gracielle G. Clavecilla, Karl Patrick R. Rosales, Marife A. |
description | Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses. |
doi_str_mv | 10.1109/ICICoS62600.2024.10636913 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10636913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10636913</ieee_id><sourcerecordid>10636913</sourcerecordid><originalsourceid>FETCH-ieee_primary_106369133</originalsourceid><addsrcrecordid>eNqFzs1KAzEUBeAoCBadN3BxfYCON4nNjzsdtC2IHfAHXJWx3rZXZpIhaRXf3hZ07eosznfgCHEusZQS_cW0mlbx0SiDWCpUl6VEo42X-kAU3nqnR6jtyDlzKAbKGju06OyxKHL-QEStUHtnBuKtphxv4uYK6kQLzhwDTJrw3nJYQVzCA31BveaW-54DwV5DFTlkeM578tIsttsOxmkHKMFuCa-z-9mng-t2FRNv1t2pOFo2babiN0_E2d3tUzUZMhHN-8Rdk77nf_f1P_UPQH5I8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</creator><creatorcontrib>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</creatorcontrib><description>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</description><identifier>EISSN: 2767-7087</identifier><identifier>EISBN: 9798350375886</identifier><identifier>DOI: 10.1109/ICICoS62600.2024.10636913</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; artificial intelligence ; coin sorting ; Grippers ; PesoBot ; Reliability ; Robot kinematics ; Safety ; Training ; vacuum gripper ; Vacuum systems ; YOLOv8</subject><ispartof>2024 7th International Conference on Informatics and Computational Sciences (ICICoS), 2024, p.54-59</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10636913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10636913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Samaniego, Ann Louiella M.</creatorcontrib><creatorcontrib>Layco, Shairille P.</creatorcontrib><creatorcontrib>Remot, Nicole L.</creatorcontrib><creatorcontrib>Bernabe, Daniella Gracielle G.</creatorcontrib><creatorcontrib>Clavecilla, Karl Patrick R.</creatorcontrib><creatorcontrib>Rosales, Marife A.</creatorcontrib><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><title>2024 7th International Conference on Informatics and Computational Sciences (ICICoS)</title><addtitle>ICICoS</addtitle><description>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</description><subject>Accuracy</subject><subject>artificial intelligence</subject><subject>coin sorting</subject><subject>Grippers</subject><subject>PesoBot</subject><subject>Reliability</subject><subject>Robot kinematics</subject><subject>Safety</subject><subject>Training</subject><subject>vacuum gripper</subject><subject>Vacuum systems</subject><subject>YOLOv8</subject><issn>2767-7087</issn><isbn>9798350375886</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFzs1KAzEUBeAoCBadN3BxfYCON4nNjzsdtC2IHfAHXJWx3rZXZpIhaRXf3hZ07eosznfgCHEusZQS_cW0mlbx0SiDWCpUl6VEo42X-kAU3nqnR6jtyDlzKAbKGju06OyxKHL-QEStUHtnBuKtphxv4uYK6kQLzhwDTJrw3nJYQVzCA31BveaW-54DwV5DFTlkeM578tIsttsOxmkHKMFuCa-z-9mng-t2FRNv1t2pOFo2babiN0_E2d3tUzUZMhHN-8Rdk77nf_f1P_UPQH5I8g</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Samaniego, Ann Louiella M.</creator><creator>Layco, Shairille P.</creator><creator>Remot, Nicole L.</creator><creator>Bernabe, Daniella Gracielle G.</creator><creator>Clavecilla, Karl Patrick R.</creator><creator>Rosales, Marife A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240717</creationdate><title>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</title><author>Samaniego, Ann Louiella M. ; Layco, Shairille P. ; Remot, Nicole L. ; Bernabe, Daniella Gracielle G. ; Clavecilla, Karl Patrick R. ; Rosales, Marife A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106369133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>artificial intelligence</topic><topic>coin sorting</topic><topic>Grippers</topic><topic>PesoBot</topic><topic>Reliability</topic><topic>Robot kinematics</topic><topic>Safety</topic><topic>Training</topic><topic>vacuum gripper</topic><topic>Vacuum systems</topic><topic>YOLOv8</topic><toplevel>online_resources</toplevel><creatorcontrib>Samaniego, Ann Louiella M.</creatorcontrib><creatorcontrib>Layco, Shairille P.</creatorcontrib><creatorcontrib>Remot, Nicole L.</creatorcontrib><creatorcontrib>Bernabe, Daniella Gracielle G.</creatorcontrib><creatorcontrib>Clavecilla, Karl Patrick R.</creatorcontrib><creatorcontrib>Rosales, Marife A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Samaniego, Ann Louiella M.</au><au>Layco, Shairille P.</au><au>Remot, Nicole L.</au><au>Bernabe, Daniella Gracielle G.</au><au>Clavecilla, Karl Patrick R.</au><au>Rosales, Marife A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm</atitle><btitle>2024 7th International Conference on Informatics and Computational Sciences (ICICoS)</btitle><stitle>ICICoS</stitle><date>2024-07-17</date><risdate>2024</risdate><spage>54</spage><epage>59</epage><pages>54-59</pages><eissn>2767-7087</eissn><eisbn>9798350375886</eisbn><abstract>Confusion and misidentification stemming from identical features, such as color, introduced by the New Generation Currency (NGC) Coin Series, prompted the development of PesoBot. This project provides an overview of the vacuum arm gripper, capable of identifying and distinguishing four denominations of newly generated coins, including 1 peso, 5 pesos, 10 pesos, and 25 cents. The project used the YOLOv8 algorithm to optimize performance and functionality, enhancing the robot's ability and speed in identifying coins. These optimizations involve extensive training and testing with its dataset, adjusting the value of iteration for optimal results. The study demonstrates an impressive overall performance, achieving a remarkable mean Average Precision (mAP) of {96.46 \%} as the highest result with its performance in training 3. The results for the said denominations resulted in high accuracy and reduced chance of misclassifications. The PesoBot's ability to differentiate between coins with nearly identical appearances is highlighted with a precision of 88.16%, a recall of 89.9%, and an F1-score of 0.955. These metrics highlight the proficiency of the study in accurately detecting and recognizing various peso coins. The PesoBot object detection model ensures reliability and efficiency in real-world peso sorting tasks and prevents possible misidentification and potential financial losses.</abstract><pub>IEEE</pub><doi>10.1109/ICICoS62600.2024.10636913</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-7087 |
ispartof | 2024 7th International Conference on Informatics and Computational Sciences (ICICoS), 2024, p.54-59 |
issn | 2767-7087 |
language | eng |
recordid | cdi_ieee_primary_10636913 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy artificial intelligence coin sorting Grippers PesoBot Reliability Robot kinematics Safety Training vacuum gripper Vacuum systems YOLOv8 |
title | PesoBot: Precision Handling of New Philippine Peso Coins Using Vacuum Gripper and YOLOv8 Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PesoBot:%20Precision%20Handling%20of%20New%20Philippine%20Peso%20Coins%20Using%20Vacuum%20Gripper%20and%20YOLOv8%20Algorithm&rft.btitle=2024%207th%20International%20Conference%20on%20Informatics%20and%20Computational%20Sciences%20(ICICoS)&rft.au=Samaniego,%20Ann%20Louiella%20M.&rft.date=2024-07-17&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.eissn=2767-7087&rft_id=info:doi/10.1109/ICICoS62600.2024.10636913&rft.eisbn=9798350375886&rft_dat=%3Cieee_CHZPO%3E10636913%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106369133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10636913&rfr_iscdi=true |