Loading…

KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery

The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a cruci...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Main Authors: Yang, Yang, Guo, Mingqiang, Zhu, Qiqi, Ran, Longli, Pan, Jun, Luo, Jiancheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Yang, Yang
Guo, Mingqiang
Zhu, Qiqi
Ran, Longli
Pan, Jun
Luo, Jiancheng
description The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.
doi_str_mv 10.1109/TGRS.2024.3445639
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638662</ieee_id><sourcerecordid>3127709757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiYj-ABMvmng9bNetXb0zKB-BBMPQ26XrzsYQVmwHyL93OC68Osl5n_ec5EHonpIepUQ-LYbzuOcTP-ixIAg5kxeoQ8Mw8ggPgkvUIVRyz4-kf41unFsRQoOQig76mcy8eKkyc3jGk2p2WENWgPdqyz1UuA3wuzWFBeeaHZ7DxuzVGg-s2sDB2C-cG4s_wR7xqCyWON6qumzyOTiz3tWlqf4qNeAYKldWBR5vVNHgt-gqV2sHd-fZRR-Dt0V_5E1nw3H_ZeppKnjtMSkzyLJISR0GKdNE51FEacRAEKFYTjLJs0wrIbUgqRAR05ALloJPwpTrkHXRY3t3a833DlydrMzOVs3LhFFfCCJFKBqKtpS2xjkLebK15UbZY0JJchKcnAQnJ8HJWXDTeWg7JQD84zmLOPfZL1g3eN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127709757</pqid></control><display><type>article</type><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</creator><creatorcontrib>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</creatorcontrib><description>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3445639</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Feature extraction ; Generators ; Histograms ; Image color analysis ; Imagery ; Knowledge-driven ; Land cover ; progressive refinement ; Radiance ; Remote sensing ; shadow removal ; Shadows ; Spatial discrimination ; Spatial resolution ; Training ; Urban areas ; very high spatial resolution (VHR) ; weakly supervised</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4097-4814 ; 0000-0002-5339-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Guo, Mingqiang</creatorcontrib><creatorcontrib>Zhu, Qiqi</creatorcontrib><creatorcontrib>Ran, Longli</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</description><subject>Feature extraction</subject><subject>Generators</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Imagery</subject><subject>Knowledge-driven</subject><subject>Land cover</subject><subject>progressive refinement</subject><subject>Radiance</subject><subject>Remote sensing</subject><subject>shadow removal</subject><subject>Shadows</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Training</subject><subject>Urban areas</subject><subject>very high spatial resolution (VHR)</subject><subject>weakly supervised</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujiYj-ABMvmng9bNetXb0zKB-BBMPQ26XrzsYQVmwHyL93OC68Osl5n_ec5EHonpIepUQ-LYbzuOcTP-ixIAg5kxeoQ8Mw8ggPgkvUIVRyz4-kf41unFsRQoOQig76mcy8eKkyc3jGk2p2WENWgPdqyz1UuA3wuzWFBeeaHZ7DxuzVGg-s2sDB2C-cG4s_wR7xqCyWON6qumzyOTiz3tWlqf4qNeAYKldWBR5vVNHgt-gqV2sHd-fZRR-Dt0V_5E1nw3H_ZeppKnjtMSkzyLJISR0GKdNE51FEacRAEKFYTjLJs0wrIbUgqRAR05ALloJPwpTrkHXRY3t3a833DlydrMzOVs3LhFFfCCJFKBqKtpS2xjkLebK15UbZY0JJchKcnAQnJ8HJWXDTeWg7JQD84zmLOPfZL1g3eN4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Yang</creator><creator>Guo, Mingqiang</creator><creator>Zhu, Qiqi</creator><creator>Ran, Longli</creator><creator>Pan, Jun</creator><creator>Luo, Jiancheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4097-4814</orcidid><orcidid>https://orcid.org/0000-0002-5339-0829</orcidid></search><sort><creationdate>2024</creationdate><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><author>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Feature extraction</topic><topic>Generators</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Imagery</topic><topic>Knowledge-driven</topic><topic>Land cover</topic><topic>progressive refinement</topic><topic>Radiance</topic><topic>Remote sensing</topic><topic>shadow removal</topic><topic>Shadows</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Training</topic><topic>Urban areas</topic><topic>very high spatial resolution (VHR)</topic><topic>weakly supervised</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Guo, Mingqiang</creatorcontrib><creatorcontrib>Zhu, Qiqi</creatorcontrib><creatorcontrib>Ran, Longli</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Guo, Mingqiang</au><au>Zhu, Qiqi</au><au>Ran, Longli</au><au>Pan, Jun</au><au>Luo, Jiancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3445639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4097-4814</orcidid><orcidid>https://orcid.org/0000-0002-5339-0829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10638662
source IEEE Electronic Library (IEL) Journals
subjects Feature extraction
Generators
Histograms
Image color analysis
Imagery
Knowledge-driven
Land cover
progressive refinement
Radiance
Remote sensing
shadow removal
Shadows
Spatial discrimination
Spatial resolution
Training
Urban areas
very high spatial resolution (VHR)
weakly supervised
title KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KO-Shadow:%20KnOwledge-Driven%20Shadow%20Progressive%20Removal%20Framework%20for%20Very%20High%20Spatial%20Resolution%20Remote%20Sensing%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Yang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3445639&rft_dat=%3Cproquest_ieee_%3E3127709757%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127709757&rft_id=info:pmid/&rft_ieee_id=10638662&rfr_iscdi=true