Loading…
KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery
The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a cruci...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Yang, Yang Guo, Mingqiang Zhu, Qiqi Ran, Longli Pan, Jun Luo, Jiancheng |
description | The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas. |
doi_str_mv | 10.1109/TGRS.2024.3445639 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638662</ieee_id><sourcerecordid>3127709757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiYj-ABMvmng9bNetXb0zKB-BBMPQ26XrzsYQVmwHyL93OC68Osl5n_ec5EHonpIepUQ-LYbzuOcTP-ixIAg5kxeoQ8Mw8ggPgkvUIVRyz4-kf41unFsRQoOQig76mcy8eKkyc3jGk2p2WENWgPdqyz1UuA3wuzWFBeeaHZ7DxuzVGg-s2sDB2C-cG4s_wR7xqCyWON6qumzyOTiz3tWlqf4qNeAYKldWBR5vVNHgt-gqV2sHd-fZRR-Dt0V_5E1nw3H_ZeppKnjtMSkzyLJISR0GKdNE51FEacRAEKFYTjLJs0wrIbUgqRAR05ALloJPwpTrkHXRY3t3a833DlydrMzOVs3LhFFfCCJFKBqKtpS2xjkLebK15UbZY0JJchKcnAQnJ8HJWXDTeWg7JQD84zmLOPfZL1g3eN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127709757</pqid></control><display><type>article</type><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</creator><creatorcontrib>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</creatorcontrib><description>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3445639</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Feature extraction ; Generators ; Histograms ; Image color analysis ; Imagery ; Knowledge-driven ; Land cover ; progressive refinement ; Radiance ; Remote sensing ; shadow removal ; Shadows ; Spatial discrimination ; Spatial resolution ; Training ; Urban areas ; very high spatial resolution (VHR) ; weakly supervised</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4097-4814 ; 0000-0002-5339-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Guo, Mingqiang</creatorcontrib><creatorcontrib>Zhu, Qiqi</creatorcontrib><creatorcontrib>Ran, Longli</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</description><subject>Feature extraction</subject><subject>Generators</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Imagery</subject><subject>Knowledge-driven</subject><subject>Land cover</subject><subject>progressive refinement</subject><subject>Radiance</subject><subject>Remote sensing</subject><subject>shadow removal</subject><subject>Shadows</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Training</subject><subject>Urban areas</subject><subject>very high spatial resolution (VHR)</subject><subject>weakly supervised</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujiYj-ABMvmng9bNetXb0zKB-BBMPQ26XrzsYQVmwHyL93OC68Osl5n_ec5EHonpIepUQ-LYbzuOcTP-ixIAg5kxeoQ8Mw8ggPgkvUIVRyz4-kf41unFsRQoOQig76mcy8eKkyc3jGk2p2WENWgPdqyz1UuA3wuzWFBeeaHZ7DxuzVGg-s2sDB2C-cG4s_wR7xqCyWON6qumzyOTiz3tWlqf4qNeAYKldWBR5vVNHgt-gqV2sHd-fZRR-Dt0V_5E1nw3H_ZeppKnjtMSkzyLJISR0GKdNE51FEacRAEKFYTjLJs0wrIbUgqRAR05ALloJPwpTrkHXRY3t3a833DlydrMzOVs3LhFFfCCJFKBqKtpS2xjkLebK15UbZY0JJchKcnAQnJ8HJWXDTeWg7JQD84zmLOPfZL1g3eN4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Yang</creator><creator>Guo, Mingqiang</creator><creator>Zhu, Qiqi</creator><creator>Ran, Longli</creator><creator>Pan, Jun</creator><creator>Luo, Jiancheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4097-4814</orcidid><orcidid>https://orcid.org/0000-0002-5339-0829</orcidid></search><sort><creationdate>2024</creationdate><title>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</title><author>Yang, Yang ; Guo, Mingqiang ; Zhu, Qiqi ; Ran, Longli ; Pan, Jun ; Luo, Jiancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Feature extraction</topic><topic>Generators</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Imagery</topic><topic>Knowledge-driven</topic><topic>Land cover</topic><topic>progressive refinement</topic><topic>Radiance</topic><topic>Remote sensing</topic><topic>shadow removal</topic><topic>Shadows</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Training</topic><topic>Urban areas</topic><topic>very high spatial resolution (VHR)</topic><topic>weakly supervised</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Guo, Mingqiang</creatorcontrib><creatorcontrib>Zhu, Qiqi</creatorcontrib><creatorcontrib>Ran, Longli</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Guo, Mingqiang</au><au>Zhu, Qiqi</au><au>Ran, Longli</au><au>Pan, Jun</au><au>Luo, Jiancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The formation of shadows in very high spatial resolution (VHR) remote sensing imagery is attributed to light being blocked by objects, reducing spectral radiance in the shadow landscape. An accurate and robust shadow removal method can recover spectral and textural information and, hence, is a crucial preprocessing step for urban image analyses. In this study, we develop a KnOwledge-driven shadow progressive removal (KO-Shadow) framework with three subnets for VHR imagery using a weakly supervised manner. Specifically, the shadow preelimination subnet is proposed to initially address the large chromatic aberration between the real and shadow situations. Then, the prior knowledge-guided refinement subnet is proposed to refine the preelimination results by mining tone and texture information. Moreover, the locality feature discriminator is designed for region-specific evaluation of the generated shadow-free samples to improve the capacity of subnets. Experimental results of six typical cities in the world show that KO-Shadow is superior to the existing methods. Moreover, the generalizability analysis in complex urban scenarios validates the robustness of our method. The shadow recovery score (SRI) is proposed to evaluate the spectral similarities between the recovered area and shadow-related land-cover types (e.g., road, building, and lawn). The results show that KO-Shadow can yield more visually realistic shadow-free images and better quantitative performance. Overall, KO-Shadow provides a new perspective for VHR image shadow removal by mining the prior knowledge of the complex shadows in urban areas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3445639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4097-4814</orcidid><orcidid>https://orcid.org/0000-0002-5339-0829</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10638662 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Feature extraction Generators Histograms Image color analysis Imagery Knowledge-driven Land cover progressive refinement Radiance Remote sensing shadow removal Shadows Spatial discrimination Spatial resolution Training Urban areas very high spatial resolution (VHR) weakly supervised |
title | KO-Shadow: KnOwledge-Driven Shadow Progressive Removal Framework for Very High Spatial Resolution Remote Sensing Imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KO-Shadow:%20KnOwledge-Driven%20Shadow%20Progressive%20Removal%20Framework%20for%20Very%20High%20Spatial%20Resolution%20Remote%20Sensing%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Yang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3445639&rft_dat=%3Cproquest_ieee_%3E3127709757%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-399dedd8a9c54b3c0cf881183e707a3f0d96ddca79c70b7783cef73be205b6c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127709757&rft_id=info:pmid/&rft_ieee_id=10638662&rfr_iscdi=true |