Loading…

Video texture analysis for VVC content

Examining video characteristics, particularly leveraging filters such as Canny and calculating image standard deviation, prior to the video coding process is a crucial preprocessing step that enhances the efficiency and quality of the coding workflow. By applying filters like Canny, valuable insight...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatma, Belghith, Taheni, Damak, Sonda, Ben Jdidia, Bouthaina, Abdallah, Ali, Ben Ayed Mohamed, Nouri, Masmoudi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 227
container_issue
container_start_page 223
container_title
container_volume 1
creator Fatma, Belghith
Taheni, Damak
Sonda, Ben Jdidia
Bouthaina, Abdallah
Ali, Ben Ayed Mohamed
Nouri, Masmoudi
description Examining video characteristics, particularly leveraging filters such as Canny and calculating image standard deviation, prior to the video coding process is a crucial preprocessing step that enhances the efficiency and quality of the coding workflow. By applying filters like Canny, valuable insights into the spatial distribution of edges are gained, enabling precise identification of regions with varying complexity. Simultaneously, the calculation of standard deviation provides a quantitative measure of pixel intensity variations, aiding in the assessment of overall image texture. This meticulous analysis, as proposed by our method, enables the optimization of coding parameters, including the selection of suitable compression algorithms and the refinement of spatial and temporal redundancy reduction strategies. Ultimately, the strategic incorporation of filter-based analyses in the preprocessing phase not only refines video coding processes but also lays the foundation for improved compression outcomes, addressing the unique characteristics of each video sequence with precision.
doi_str_mv 10.1109/ATSIP62566.2024.10639036
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10639036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639036</ieee_id><sourcerecordid>10639036</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-b33e1acf703d136577cf6e7a9b05f26e272c1820fe094d17bfe04befbd9a062f3</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsLR5Axezcpd4Z25yZ2ZZgj-FgkJrcFdmkjswUhNJIti3t6CuvrM6h08IqaBQCtzder_bvJCuiAoNuiwUEDpAuhCZM85iBVip0paXYqHJmtwa-3Ytsml6BwDUgFbRQtw2qeNBzvw9f40sfe-PpylNMg6jbJpatkM_cz-vxFX0x4mzv12K14f7ff2Ub58fN_V6m6dzfs4DIivfRgPYKaTKmDYSG-8CVFETa6NbZTVEBld2yoQzlIFj6JwH0hGX4ubXm5j58DmmDz-eDv_X8AcBc0Ko</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video texture analysis for VVC content</title><source>IEEE Xplore All Conference Series</source><creator>Fatma, Belghith ; Taheni, Damak ; Sonda, Ben Jdidia ; Bouthaina, Abdallah ; Ali, Ben Ayed Mohamed ; Nouri, Masmoudi</creator><creatorcontrib>Fatma, Belghith ; Taheni, Damak ; Sonda, Ben Jdidia ; Bouthaina, Abdallah ; Ali, Ben Ayed Mohamed ; Nouri, Masmoudi</creatorcontrib><description>Examining video characteristics, particularly leveraging filters such as Canny and calculating image standard deviation, prior to the video coding process is a crucial preprocessing step that enhances the efficiency and quality of the coding workflow. By applying filters like Canny, valuable insights into the spatial distribution of edges are gained, enabling precise identification of regions with varying complexity. Simultaneously, the calculation of standard deviation provides a quantitative measure of pixel intensity variations, aiding in the assessment of overall image texture. This meticulous analysis, as proposed by our method, enables the optimization of coding parameters, including the selection of suitable compression algorithms and the refinement of spatial and temporal redundancy reduction strategies. Ultimately, the strategic incorporation of filter-based analyses in the preprocessing phase not only refines video coding processes but also lays the foundation for improved compression outcomes, addressing the unique characteristics of each video sequence with precision.</description><identifier>EISSN: 2687-878X</identifier><identifier>EISBN: 9798350351484</identifier><identifier>DOI: 10.1109/ATSIP62566.2024.10639036</identifier><language>eng</language><publisher>IEEE</publisher><subject>Canny ; Filters ; Graphical models ; Image coding ; Image edge detection ; Image texture ; standard deviation ; texture ; Video coding ; Video content ; Video sequences</subject><ispartof>2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), 2024, Vol.1, p.223-227</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10639036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fatma, Belghith</creatorcontrib><creatorcontrib>Taheni, Damak</creatorcontrib><creatorcontrib>Sonda, Ben Jdidia</creatorcontrib><creatorcontrib>Bouthaina, Abdallah</creatorcontrib><creatorcontrib>Ali, Ben Ayed Mohamed</creatorcontrib><creatorcontrib>Nouri, Masmoudi</creatorcontrib><title>Video texture analysis for VVC content</title><title>2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP)</title><addtitle>ATSIP</addtitle><description>Examining video characteristics, particularly leveraging filters such as Canny and calculating image standard deviation, prior to the video coding process is a crucial preprocessing step that enhances the efficiency and quality of the coding workflow. By applying filters like Canny, valuable insights into the spatial distribution of edges are gained, enabling precise identification of regions with varying complexity. Simultaneously, the calculation of standard deviation provides a quantitative measure of pixel intensity variations, aiding in the assessment of overall image texture. This meticulous analysis, as proposed by our method, enables the optimization of coding parameters, including the selection of suitable compression algorithms and the refinement of spatial and temporal redundancy reduction strategies. Ultimately, the strategic incorporation of filter-based analyses in the preprocessing phase not only refines video coding processes but also lays the foundation for improved compression outcomes, addressing the unique characteristics of each video sequence with precision.</description><subject>Canny</subject><subject>Filters</subject><subject>Graphical models</subject><subject>Image coding</subject><subject>Image edge detection</subject><subject>Image texture</subject><subject>standard deviation</subject><subject>texture</subject><subject>Video coding</subject><subject>Video content</subject><subject>Video sequences</subject><issn>2687-878X</issn><isbn>9798350351484</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsLR5Axezcpd4Z25yZ2ZZgj-FgkJrcFdmkjswUhNJIti3t6CuvrM6h08IqaBQCtzder_bvJCuiAoNuiwUEDpAuhCZM85iBVip0paXYqHJmtwa-3Ytsml6BwDUgFbRQtw2qeNBzvw9f40sfe-PpylNMg6jbJpatkM_cz-vxFX0x4mzv12K14f7ff2Ub58fN_V6m6dzfs4DIivfRgPYKaTKmDYSG-8CVFETa6NbZTVEBld2yoQzlIFj6JwH0hGX4ubXm5j58DmmDz-eDv_X8AcBc0Ko</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Fatma, Belghith</creator><creator>Taheni, Damak</creator><creator>Sonda, Ben Jdidia</creator><creator>Bouthaina, Abdallah</creator><creator>Ali, Ben Ayed Mohamed</creator><creator>Nouri, Masmoudi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240711</creationdate><title>Video texture analysis for VVC content</title><author>Fatma, Belghith ; Taheni, Damak ; Sonda, Ben Jdidia ; Bouthaina, Abdallah ; Ali, Ben Ayed Mohamed ; Nouri, Masmoudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-b33e1acf703d136577cf6e7a9b05f26e272c1820fe094d17bfe04befbd9a062f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Canny</topic><topic>Filters</topic><topic>Graphical models</topic><topic>Image coding</topic><topic>Image edge detection</topic><topic>Image texture</topic><topic>standard deviation</topic><topic>texture</topic><topic>Video coding</topic><topic>Video content</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Fatma, Belghith</creatorcontrib><creatorcontrib>Taheni, Damak</creatorcontrib><creatorcontrib>Sonda, Ben Jdidia</creatorcontrib><creatorcontrib>Bouthaina, Abdallah</creatorcontrib><creatorcontrib>Ali, Ben Ayed Mohamed</creatorcontrib><creatorcontrib>Nouri, Masmoudi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fatma, Belghith</au><au>Taheni, Damak</au><au>Sonda, Ben Jdidia</au><au>Bouthaina, Abdallah</au><au>Ali, Ben Ayed Mohamed</au><au>Nouri, Masmoudi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video texture analysis for VVC content</atitle><btitle>2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP)</btitle><stitle>ATSIP</stitle><date>2024-07-11</date><risdate>2024</risdate><volume>1</volume><spage>223</spage><epage>227</epage><pages>223-227</pages><eissn>2687-878X</eissn><eisbn>9798350351484</eisbn><abstract>Examining video characteristics, particularly leveraging filters such as Canny and calculating image standard deviation, prior to the video coding process is a crucial preprocessing step that enhances the efficiency and quality of the coding workflow. By applying filters like Canny, valuable insights into the spatial distribution of edges are gained, enabling precise identification of regions with varying complexity. Simultaneously, the calculation of standard deviation provides a quantitative measure of pixel intensity variations, aiding in the assessment of overall image texture. This meticulous analysis, as proposed by our method, enables the optimization of coding parameters, including the selection of suitable compression algorithms and the refinement of spatial and temporal redundancy reduction strategies. Ultimately, the strategic incorporation of filter-based analyses in the preprocessing phase not only refines video coding processes but also lays the foundation for improved compression outcomes, addressing the unique characteristics of each video sequence with precision.</abstract><pub>IEEE</pub><doi>10.1109/ATSIP62566.2024.10639036</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2687-878X
ispartof 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), 2024, Vol.1, p.223-227
issn 2687-878X
language eng
recordid cdi_ieee_primary_10639036
source IEEE Xplore All Conference Series
subjects Canny
Filters
Graphical models
Image coding
Image edge detection
Image texture
standard deviation
texture
Video coding
Video content
Video sequences
title Video texture analysis for VVC content
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20texture%20analysis%20for%20VVC%20content&rft.btitle=2024%20IEEE%207th%20International%20Conference%20on%20Advanced%20Technologies,%20Signal%20and%20Image%20Processing%20(ATSIP)&rft.au=Fatma,%20Belghith&rft.date=2024-07-11&rft.volume=1&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.eissn=2687-878X&rft_id=info:doi/10.1109/ATSIP62566.2024.10639036&rft.eisbn=9798350351484&rft_dat=%3Cieee_CHZPO%3E10639036%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-b33e1acf703d136577cf6e7a9b05f26e272c1820fe094d17bfe04befbd9a062f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10639036&rfr_iscdi=true