Loading…

Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System

Maximum power point tracking (MPPT) helps in generating maximum power from PV system at a specified irradiance levels irrespective of changes in the sun's position and cloud cover conditions. From previous studies, it is observed that, conventional methods for MPPT suffers from oscillations aro...

Full description

Saved in:
Bibliographic Details
Main Authors: Vora, Kunal, Liu, Shichao, Dhulipati, Himavarsha
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Vora, Kunal
Liu, Shichao
Dhulipati, Himavarsha
description Maximum power point tracking (MPPT) helps in generating maximum power from PV system at a specified irradiance levels irrespective of changes in the sun's position and cloud cover conditions. From previous studies, it is observed that, conventional methods for MPPT suffers from oscillations around maximum power point and does not adapt to changing environmental conditions of irradiance and temperature. Therefore, new techniques like reinforcement learning is implemented in PV system to overcome aforementioned limitations. In this paper, integration of deep learning and reinforcement learning named deep Q-learning (DQN) is implemented in grid connected PV system. DQN solves the problem of varying environmental conditions by discretizing the state spaces. The proposed method is implemented in MATLAB/ SIMULINK environment. Based on the simulation results, it can be proposed that proposed method is efficient in handling ever changing environmental conditions.
doi_str_mv 10.1109/ICPS59941.2024.10639977
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10639977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639977</ieee_id><sourcerecordid>10639977</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-3ef1dd46b82fd6b2e338f9001f732b88bfefca79ed45a9c773388ee8440e12763</originalsourceid><addsrcrecordid>eNo1j1FLwzAUhaMgOGb_gWD-QOtN0ja5j1p1DisWN30dbXMjkbUdaV_271dRnw6c73A4h7EbAYkQgLfrotpkiKlIJMg0EZArRK3PWIQajcpA5QqEPGcLqXOMlUG8ZNE4fgOAkkJoMAv28kB04O_kezeEljrqJ15SHXrff_H7eiTLX6tqy4uhn8Kw53OKr4K3P0ZP7TTz6pNvjuNE3RW7cPV-pOhPl-zj6XFbPMfl22pd3JWxnzdOsSInrE3zxkhn80aSUsYhgHBaycaYxpFra41k06zGVuuZGyKTpkBivqKW7Pq31xPR7hB8V4fj7v-_OgF2B07B</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System</title><source>IEEE Xplore All Conference Series</source><creator>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</creator><creatorcontrib>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</creatorcontrib><description>Maximum power point tracking (MPPT) helps in generating maximum power from PV system at a specified irradiance levels irrespective of changes in the sun's position and cloud cover conditions. From previous studies, it is observed that, conventional methods for MPPT suffers from oscillations around maximum power point and does not adapt to changing environmental conditions of irradiance and temperature. Therefore, new techniques like reinforcement learning is implemented in PV system to overcome aforementioned limitations. In this paper, integration of deep learning and reinforcement learning named deep Q-learning (DQN) is implemented in grid connected PV system. DQN solves the problem of varying environmental conditions by discretizing the state spaces. The proposed method is implemented in MATLAB/ SIMULINK environment. Based on the simulation results, it can be proposed that proposed method is efficient in handling ever changing environmental conditions.</description><identifier>EISSN: 2769-3899</identifier><identifier>EISBN: 9798350363012</identifier><identifier>DOI: 10.1109/ICPS59941.2024.10639977</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep reinforcement learning ; Energy Storage ; Heuristic algorithms ; Maximum power point trackers ; Maximum power point tracking ; Perturb and Observe Algorithm ; Photovoltaic System ; Q-learning ; Renewable energy sources ; Simulation ; Software packages ; Sustainable Energy</subject><ispartof>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10639977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vora, Kunal</creatorcontrib><creatorcontrib>Liu, Shichao</creatorcontrib><creatorcontrib>Dhulipati, Himavarsha</creatorcontrib><title>Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System</title><title>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)</title><addtitle>ICPS</addtitle><description>Maximum power point tracking (MPPT) helps in generating maximum power from PV system at a specified irradiance levels irrespective of changes in the sun's position and cloud cover conditions. From previous studies, it is observed that, conventional methods for MPPT suffers from oscillations around maximum power point and does not adapt to changing environmental conditions of irradiance and temperature. Therefore, new techniques like reinforcement learning is implemented in PV system to overcome aforementioned limitations. In this paper, integration of deep learning and reinforcement learning named deep Q-learning (DQN) is implemented in grid connected PV system. DQN solves the problem of varying environmental conditions by discretizing the state spaces. The proposed method is implemented in MATLAB/ SIMULINK environment. Based on the simulation results, it can be proposed that proposed method is efficient in handling ever changing environmental conditions.</description><subject>Deep reinforcement learning</subject><subject>Energy Storage</subject><subject>Heuristic algorithms</subject><subject>Maximum power point trackers</subject><subject>Maximum power point tracking</subject><subject>Perturb and Observe Algorithm</subject><subject>Photovoltaic System</subject><subject>Q-learning</subject><subject>Renewable energy sources</subject><subject>Simulation</subject><subject>Software packages</subject><subject>Sustainable Energy</subject><issn>2769-3899</issn><isbn>9798350363012</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j1FLwzAUhaMgOGb_gWD-QOtN0ja5j1p1DisWN30dbXMjkbUdaV_271dRnw6c73A4h7EbAYkQgLfrotpkiKlIJMg0EZArRK3PWIQajcpA5QqEPGcLqXOMlUG8ZNE4fgOAkkJoMAv28kB04O_kezeEljrqJ15SHXrff_H7eiTLX6tqy4uhn8Kw53OKr4K3P0ZP7TTz6pNvjuNE3RW7cPV-pOhPl-zj6XFbPMfl22pd3JWxnzdOsSInrE3zxkhn80aSUsYhgHBaycaYxpFra41k06zGVuuZGyKTpkBivqKW7Pq31xPR7hB8V4fj7v-_OgF2B07B</recordid><startdate>20240512</startdate><enddate>20240512</enddate><creator>Vora, Kunal</creator><creator>Liu, Shichao</creator><creator>Dhulipati, Himavarsha</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240512</creationdate><title>Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System</title><author>Vora, Kunal ; Liu, Shichao ; Dhulipati, Himavarsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-3ef1dd46b82fd6b2e338f9001f732b88bfefca79ed45a9c773388ee8440e12763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep reinforcement learning</topic><topic>Energy Storage</topic><topic>Heuristic algorithms</topic><topic>Maximum power point trackers</topic><topic>Maximum power point tracking</topic><topic>Perturb and Observe Algorithm</topic><topic>Photovoltaic System</topic><topic>Q-learning</topic><topic>Renewable energy sources</topic><topic>Simulation</topic><topic>Software packages</topic><topic>Sustainable Energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Vora, Kunal</creatorcontrib><creatorcontrib>Liu, Shichao</creatorcontrib><creatorcontrib>Dhulipati, Himavarsha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vora, Kunal</au><au>Liu, Shichao</au><au>Dhulipati, Himavarsha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System</atitle><btitle>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)</btitle><stitle>ICPS</stitle><date>2024-05-12</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2769-3899</eissn><eisbn>9798350363012</eisbn><abstract>Maximum power point tracking (MPPT) helps in generating maximum power from PV system at a specified irradiance levels irrespective of changes in the sun's position and cloud cover conditions. From previous studies, it is observed that, conventional methods for MPPT suffers from oscillations around maximum power point and does not adapt to changing environmental conditions of irradiance and temperature. Therefore, new techniques like reinforcement learning is implemented in PV system to overcome aforementioned limitations. In this paper, integration of deep learning and reinforcement learning named deep Q-learning (DQN) is implemented in grid connected PV system. DQN solves the problem of varying environmental conditions by discretizing the state spaces. The proposed method is implemented in MATLAB/ SIMULINK environment. Based on the simulation results, it can be proposed that proposed method is efficient in handling ever changing environmental conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICPS59941.2024.10639977</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2769-3899
ispartof 2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), 2024, p.1-5
issn 2769-3899
language eng
recordid cdi_ieee_primary_10639977
source IEEE Xplore All Conference Series
subjects Deep reinforcement learning
Energy Storage
Heuristic algorithms
Maximum power point trackers
Maximum power point tracking
Perturb and Observe Algorithm
Photovoltaic System
Q-learning
Renewable energy sources
Simulation
Software packages
Sustainable Energy
title Deep Reinforcement Learning Based MPPT Control for Grid Connected PV System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Reinforcement%20Learning%20Based%20MPPT%20Control%20for%20Grid%20Connected%20PV%20System&rft.btitle=2024%20IEEE%207th%20International%20Conference%20on%20Industrial%20Cyber-Physical%20Systems%20(ICPS)&rft.au=Vora,%20Kunal&rft.date=2024-05-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2769-3899&rft_id=info:doi/10.1109/ICPS59941.2024.10639977&rft.eisbn=9798350363012&rft_dat=%3Cieee_CHZPO%3E10639977%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-3ef1dd46b82fd6b2e338f9001f732b88bfefca79ed45a9c773388ee8440e12763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10639977&rfr_iscdi=true