Loading…

Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks

The prediction of computer numerical control (CNC) machining time critically impacts productivity. Computer-aided manufacturing (CAM) software typically has machining time prediction capabilities, allowing users to know the machining time for parts during toolpath planning. However, CAM software doe...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Xiao-Xing, Lee, Wei-Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Chen, Xiao-Xing
Lee, Wei-Chen
description The prediction of computer numerical control (CNC) machining time critically impacts productivity. Computer-aided manufacturing (CAM) software typically has machining time prediction capabilities, allowing users to know the machining time for parts during toolpath planning. However, CAM software does not consider the kinematics of the CNC machines and the control principle of the CNC controllers. Hence, the predicted machining time is often much shorter than the actual one. To address this problem, we developed two neural network-based machining time prediction models for milling operations using MATLAB and TensorFlow. The results show that using the models proposed in this research could achieve prediction errors within 2%, while the CAM software had about 12% error.
doi_str_mv 10.1109/ICPS59941.2024.10640035
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10640035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10640035</ieee_id><sourcerecordid>10640035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-b0555aa23a03b2ea6fb97743264142606dbcab7e725777f9b635cc370d6854943</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdBsNS8geC-QOK_5-xlCR4KPYGtt2V3s9HVNCm7Eenbm6JeDXzMDMMgdEegIAT0_bzavAitOSkoUF4QkByAiQuUaaVLJoBJBoReoglVUues1PoaZSl9wGijhCgoJ-h15txXNIPHm-jr4IbQd7hvcLWq8NK499CF7g1vw8Hjpo94Gdr2DNZHP4ZGb8K7dAYrP7a0owzfffxMN-iqMW3y2Z9O0e7xYVs954v107yaLfIwzh1yC0IIYygzwCz1RjZWK8UZlZxwKkHW1hmrvKJCKdVoK5lwjimoZSm45myKbn97g_d-f4zhYOJp_38F-wFqf1Il</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Xiao-Xing ; Lee, Wei-Chen</creator><creatorcontrib>Chen, Xiao-Xing ; Lee, Wei-Chen</creatorcontrib><description>The prediction of computer numerical control (CNC) machining time critically impacts productivity. Computer-aided manufacturing (CAM) software typically has machining time prediction capabilities, allowing users to know the machining time for parts during toolpath planning. However, CAM software does not consider the kinematics of the CNC machines and the control principle of the CNC controllers. Hence, the predicted machining time is often much shorter than the actual one. To address this problem, we developed two neural network-based machining time prediction models for milling operations using MATLAB and TensorFlow. The results show that using the models proposed in this research could achieve prediction errors within 2%, while the CAM software had about 12% error.</description><identifier>EISSN: 2769-3899</identifier><identifier>EISBN: 9798350363012</identifier><identifier>DOI: 10.1109/ICPS59941.2024.10640035</identifier><language>eng</language><publisher>IEEE</publisher><subject>Kinematics ; Machining Time ; Milling ; Neural Network ; Neural networks ; Planning ; Predictive models ; Productivity ; Software</subject><ispartof>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), 2024, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10640035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10640035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiao-Xing</creatorcontrib><creatorcontrib>Lee, Wei-Chen</creatorcontrib><title>Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks</title><title>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)</title><addtitle>ICPS</addtitle><description>The prediction of computer numerical control (CNC) machining time critically impacts productivity. Computer-aided manufacturing (CAM) software typically has machining time prediction capabilities, allowing users to know the machining time for parts during toolpath planning. However, CAM software does not consider the kinematics of the CNC machines and the control principle of the CNC controllers. Hence, the predicted machining time is often much shorter than the actual one. To address this problem, we developed two neural network-based machining time prediction models for milling operations using MATLAB and TensorFlow. The results show that using the models proposed in this research could achieve prediction errors within 2%, while the CAM software had about 12% error.</description><subject>Kinematics</subject><subject>Machining Time</subject><subject>Milling</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Planning</subject><subject>Predictive models</subject><subject>Productivity</subject><subject>Software</subject><issn>2769-3899</issn><isbn>9798350363012</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AYhFdBsNS8geC-QOK_5-xlCR4KPYGtt2V3s9HVNCm7Eenbm6JeDXzMDMMgdEegIAT0_bzavAitOSkoUF4QkByAiQuUaaVLJoBJBoReoglVUues1PoaZSl9wGijhCgoJ-h15txXNIPHm-jr4IbQd7hvcLWq8NK499CF7g1vw8Hjpo94Gdr2DNZHP4ZGb8K7dAYrP7a0owzfffxMN-iqMW3y2Z9O0e7xYVs954v107yaLfIwzh1yC0IIYygzwCz1RjZWK8UZlZxwKkHW1hmrvKJCKdVoK5lwjimoZSm45myKbn97g_d-f4zhYOJp_38F-wFqf1Il</recordid><startdate>20240512</startdate><enddate>20240512</enddate><creator>Chen, Xiao-Xing</creator><creator>Lee, Wei-Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240512</creationdate><title>Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks</title><author>Chen, Xiao-Xing ; Lee, Wei-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-b0555aa23a03b2ea6fb97743264142606dbcab7e725777f9b635cc370d6854943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Kinematics</topic><topic>Machining Time</topic><topic>Milling</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Planning</topic><topic>Predictive models</topic><topic>Productivity</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao-Xing</creatorcontrib><creatorcontrib>Lee, Wei-Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiao-Xing</au><au>Lee, Wei-Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks</atitle><btitle>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)</btitle><stitle>ICPS</stitle><date>2024-05-12</date><risdate>2024</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2769-3899</eissn><eisbn>9798350363012</eisbn><abstract>The prediction of computer numerical control (CNC) machining time critically impacts productivity. Computer-aided manufacturing (CAM) software typically has machining time prediction capabilities, allowing users to know the machining time for parts during toolpath planning. However, CAM software does not consider the kinematics of the CNC machines and the control principle of the CNC controllers. Hence, the predicted machining time is often much shorter than the actual one. To address this problem, we developed two neural network-based machining time prediction models for milling operations using MATLAB and TensorFlow. The results show that using the models proposed in this research could achieve prediction errors within 2%, while the CAM software had about 12% error.</abstract><pub>IEEE</pub><doi>10.1109/ICPS59941.2024.10640035</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2769-3899
ispartof 2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), 2024, p.1-2
issn 2769-3899
language eng
recordid cdi_ieee_primary_10640035
source IEEE Xplore All Conference Series
subjects Kinematics
Machining Time
Milling
Neural Network
Neural networks
Planning
Predictive models
Productivity
Software
title Accurate Prediction of CNC Machining Time for Milling Operations Using Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20Prediction%20of%20CNC%20Machining%20Time%20for%20Milling%20Operations%20Using%20Neural%20Networks&rft.btitle=2024%20IEEE%207th%20International%20Conference%20on%20Industrial%20Cyber-Physical%20Systems%20(ICPS)&rft.au=Chen,%20Xiao-Xing&rft.date=2024-05-12&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2769-3899&rft_id=info:doi/10.1109/ICPS59941.2024.10640035&rft.eisbn=9798350363012&rft_dat=%3Cieee_CHZPO%3E10640035%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-b0555aa23a03b2ea6fb97743264142606dbcab7e725777f9b635cc370d6854943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10640035&rfr_iscdi=true