Loading…

The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data

In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acq...

Full description

Saved in:
Bibliographic Details
Main Authors: Ma, Yunmei, Zhao, Lei, Chen, Erxue, Li, Zengyuan, Fan, Yaxiong, Xu, Kunpeng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4981
container_issue
container_start_page 4978
container_title
container_volume
creator Ma, Yunmei
Zhao, Lei
Chen, Erxue
Li, Zengyuan
Fan, Yaxiong
Xu, Kunpeng
description In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.
doi_str_mv 10.1109/IGARSS53475.2024.10641961
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10641961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10641961</ieee_id><sourcerecordid>10641961</sourcerecordid><originalsourceid>FETCH-ieee_primary_106419613</originalsourceid><addsrcrecordid>eNqFj81OwkAUhUcTExF4AxfXB2idn05LlwUpumBDcU0Ge5UxdEbnTk14e5ooa1fnS86XnBzGHgRPheDl48uq2jSNVlmhU8lllgqeZ6LMxRWblkU5U5qrnCupr9lICq2SgnN1y-6IPgeYSc5HjLYHhNoHpAjV3v8grILvXQtz6ztDBEuKtjPRegdzQ9jCAOv-GG1So4l9QFj4bm_dr7LGePAtvJJ1Hxct4HeP7u0ETbWBJxPNhN28myPh9C_H7L5ebhfPiUXE3VcY9sJpdzmj_qnPDilOhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><source>IEEE Xplore All Conference Series</source><creator>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</creator><creatorcontrib>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</creatorcontrib><description>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10641961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Biomass ; Estimation ; Feature selection ; Forest biomass estimation ; Forestry ; Geoscience and remote sensing ; Machine learning ; Multi-feature combination ; Multi-frequency SAR data ; Robustness</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.4978-4981</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10641961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10641961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yunmei</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Chen, Erxue</creatorcontrib><creatorcontrib>Li, Zengyuan</creatorcontrib><creatorcontrib>Fan, Yaxiong</creatorcontrib><creatorcontrib>Xu, Kunpeng</creatorcontrib><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</description><subject>Accuracy</subject><subject>Biomass</subject><subject>Estimation</subject><subject>Feature selection</subject><subject>Forest biomass estimation</subject><subject>Forestry</subject><subject>Geoscience and remote sensing</subject><subject>Machine learning</subject><subject>Multi-feature combination</subject><subject>Multi-frequency SAR data</subject><subject>Robustness</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81OwkAUhUcTExF4AxfXB2idn05LlwUpumBDcU0Ge5UxdEbnTk14e5ooa1fnS86XnBzGHgRPheDl48uq2jSNVlmhU8lllgqeZ6LMxRWblkU5U5qrnCupr9lICq2SgnN1y-6IPgeYSc5HjLYHhNoHpAjV3v8grILvXQtz6ztDBEuKtjPRegdzQ9jCAOv-GG1So4l9QFj4bm_dr7LGePAtvJJ1Hxct4HeP7u0ETbWBJxPNhN28myPh9C_H7L5ebhfPiUXE3VcY9sJpdzmj_qnPDilOhA</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Ma, Yunmei</creator><creator>Zhao, Lei</creator><creator>Chen, Erxue</creator><creator>Li, Zengyuan</creator><creator>Fan, Yaxiong</creator><creator>Xu, Kunpeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><author>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106419613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Biomass</topic><topic>Estimation</topic><topic>Feature selection</topic><topic>Forest biomass estimation</topic><topic>Forestry</topic><topic>Geoscience and remote sensing</topic><topic>Machine learning</topic><topic>Multi-feature combination</topic><topic>Multi-frequency SAR data</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yunmei</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Chen, Erxue</creatorcontrib><creatorcontrib>Li, Zengyuan</creatorcontrib><creatorcontrib>Fan, Yaxiong</creatorcontrib><creatorcontrib>Xu, Kunpeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yunmei</au><au>Zhao, Lei</au><au>Chen, Erxue</au><au>Li, Zengyuan</au><au>Fan, Yaxiong</au><au>Xu, Kunpeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>4978</spage><epage>4981</epage><pages>4978-4981</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10641961</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.4978-4981
issn 2153-7003
language eng
recordid cdi_ieee_primary_10641961
source IEEE Xplore All Conference Series
subjects Accuracy
Biomass
Estimation
Feature selection
Forest biomass estimation
Forestry
Geoscience and remote sensing
Machine learning
Multi-feature combination
Multi-frequency SAR data
Robustness
title The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Forest%20Above%20Ground%20Biomass%20Estimation%20Based%20on%20Multi-Feature%20Combination%20Method%20Using%20Multi-Frequency%20SAR%20Data&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Ma,%20Yunmei&rft.date=2024-07-07&rft.spage=4978&rft.epage=4981&rft.pages=4978-4981&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10641961&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10641961%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106419613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10641961&rfr_iscdi=true