Loading…
The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data
In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acq...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4981 |
container_issue | |
container_start_page | 4978 |
container_title | |
container_volume | |
creator | Ma, Yunmei Zhao, Lei Chen, Erxue Li, Zengyuan Fan, Yaxiong Xu, Kunpeng |
description | In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features. |
doi_str_mv | 10.1109/IGARSS53475.2024.10641961 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10641961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10641961</ieee_id><sourcerecordid>10641961</sourcerecordid><originalsourceid>FETCH-ieee_primary_106419613</originalsourceid><addsrcrecordid>eNqFj81OwkAUhUcTExF4AxfXB2idn05LlwUpumBDcU0Ge5UxdEbnTk14e5ooa1fnS86XnBzGHgRPheDl48uq2jSNVlmhU8lllgqeZ6LMxRWblkU5U5qrnCupr9lICq2SgnN1y-6IPgeYSc5HjLYHhNoHpAjV3v8grILvXQtz6ztDBEuKtjPRegdzQ9jCAOv-GG1So4l9QFj4bm_dr7LGePAtvJJ1Hxct4HeP7u0ETbWBJxPNhN28myPh9C_H7L5ebhfPiUXE3VcY9sJpdzmj_qnPDilOhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><source>IEEE Xplore All Conference Series</source><creator>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</creator><creatorcontrib>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</creatorcontrib><description>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10641961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Biomass ; Estimation ; Feature selection ; Forest biomass estimation ; Forestry ; Geoscience and remote sensing ; Machine learning ; Multi-feature combination ; Multi-frequency SAR data ; Robustness</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.4978-4981</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10641961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10641961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yunmei</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Chen, Erxue</creatorcontrib><creatorcontrib>Li, Zengyuan</creatorcontrib><creatorcontrib>Fan, Yaxiong</creatorcontrib><creatorcontrib>Xu, Kunpeng</creatorcontrib><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</description><subject>Accuracy</subject><subject>Biomass</subject><subject>Estimation</subject><subject>Feature selection</subject><subject>Forest biomass estimation</subject><subject>Forestry</subject><subject>Geoscience and remote sensing</subject><subject>Machine learning</subject><subject>Multi-feature combination</subject><subject>Multi-frequency SAR data</subject><subject>Robustness</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81OwkAUhUcTExF4AxfXB2idn05LlwUpumBDcU0Ge5UxdEbnTk14e5ooa1fnS86XnBzGHgRPheDl48uq2jSNVlmhU8lllgqeZ6LMxRWblkU5U5qrnCupr9lICq2SgnN1y-6IPgeYSc5HjLYHhNoHpAjV3v8grILvXQtz6ztDBEuKtjPRegdzQ9jCAOv-GG1So4l9QFj4bm_dr7LGePAtvJJ1Hxct4HeP7u0ETbWBJxPNhN28myPh9C_H7L5ebhfPiUXE3VcY9sJpdzmj_qnPDilOhA</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Ma, Yunmei</creator><creator>Zhao, Lei</creator><creator>Chen, Erxue</creator><creator>Li, Zengyuan</creator><creator>Fan, Yaxiong</creator><creator>Xu, Kunpeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</title><author>Ma, Yunmei ; Zhao, Lei ; Chen, Erxue ; Li, Zengyuan ; Fan, Yaxiong ; Xu, Kunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106419613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Biomass</topic><topic>Estimation</topic><topic>Feature selection</topic><topic>Forest biomass estimation</topic><topic>Forestry</topic><topic>Geoscience and remote sensing</topic><topic>Machine learning</topic><topic>Multi-feature combination</topic><topic>Multi-frequency SAR data</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yunmei</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Chen, Erxue</creatorcontrib><creatorcontrib>Li, Zengyuan</creatorcontrib><creatorcontrib>Fan, Yaxiong</creatorcontrib><creatorcontrib>Xu, Kunpeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yunmei</au><au>Zhao, Lei</au><au>Chen, Erxue</au><au>Li, Zengyuan</au><au>Fan, Yaxiong</au><au>Xu, Kunpeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>4978</spage><epage>4981</epage><pages>4978-4981</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>In this paper, we studied the multi-feature combination estimation approach of forest above ground biomass (AGB) using X-band InSAR and P-band PolInSAR data. We focus on a crucial step of the estimation process, which is selection of the optimal feature combination. Firstly, the feature pool was acquired using multi-frequency SAR data, which includes optimized features (forest height and polarimetric interferometric feature) and original features (polarimetric features, intensity features, and texture features). Then, using machine learning method to select the optimal feature combination. Finally, the forest AGB was estimated based on multiple types of the features combination. The experimental results showed that the combination of optimized features with original features has the highest accuracy in forest AGB estimation, followed by the combination using only optimized features. The accuracy of forest AGB estimation is lower for the feature combination that does not include optimized features.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10641961</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.4978-4981 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_10641961 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Biomass Estimation Feature selection Forest biomass estimation Forestry Geoscience and remote sensing Machine learning Multi-feature combination Multi-frequency SAR data Robustness |
title | The Forest Above Ground Biomass Estimation Based on Multi-Feature Combination Method Using Multi-Frequency SAR Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Forest%20Above%20Ground%20Biomass%20Estimation%20Based%20on%20Multi-Feature%20Combination%20Method%20Using%20Multi-Frequency%20SAR%20Data&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Ma,%20Yunmei&rft.date=2024-07-07&rft.spage=4978&rft.epage=4981&rft.pages=4978-4981&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10641961&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10641961%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106419613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10641961&rfr_iscdi=true |