Loading…
On the Modelling of Ship Wakes in S-Band SAR Images and an Application to Ship Identification
We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of wind-induced sea elevation and the Kelvin wakes model of a moving ship. Our SAR imaging simulation takes into account frequency-dependent radar parameters, i.e., the complex dielectric constant (ε) and the relaxation rate (μ) of seawater. The former was determined through the Debye model while the latter was estimated for S-band SAR based on preexisting values for the L, C, and X-bands. The results show good agreement between simulated and real imagery upon visual inspection. The results of implementing different training strategies are also reported, showcasing a notable improvement in accuracy of classifier achieved by integrating real and simulated SAR images during the training. |
---|---|
ISSN: | 2153-7003 |
DOI: | 10.1109/IGARSS53475.2024.10642130 |