Loading…

Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples

The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Nie, Jie, Zuo, Zijie, Liang, Xinyue, Song, Ning, Ye, Min, Wen, Qi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3021
container_issue
container_start_page 3018
container_title
container_volume
creator Nie, Jie
Zuo, Zijie
Liang, Xinyue
Song, Ning
Ye, Min
Wen, Qi
description The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.
doi_str_mv 10.1109/IGARSS53475.2024.10642219
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642219</ieee_id><sourcerecordid>10642219</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422193</originalsourceid><addsrcrecordid>eNqFj8FOwzAQRA0SUgv0DziYD0hY23HTHIGm0AM9kN4rt1nA4NiR7QqlX19XwJnLvJld7UpDyC2DnDGo7pZP969NI0VRypwDL3IG04JzVp2RSVVWMyFBTEFweU7GnEmRlQBiRC5D-ExmxgHG5DBH7OkK916ZhPjt_Ff2oAK2tFY-ftBmCBE7unAedypEbd_pi2vR0LrrjRtOeeVstrQt9pjERqps-zM7Jb1Txgx0rkP0eruP6XGj0imGa3LxpkzAyS-vyM2iXj8-ZxoRN73XnfLD5q-T-Gd9BM-NUgw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><source>IEEE Xplore All Conference Series</source><creator>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</creator><creatorcontrib>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</creatorcontrib><description>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642219</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; AI forecasting model ; Artificial neural networks ; data driven ; deep neural network ; Earth ; i.i.d. assumption ; Predictive models ; Sea surface temperature ; Spatiotemporal phenomena ; spatiotemporal sampling ; Stability analysis</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3018-3021</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Jie</creatorcontrib><creatorcontrib>Zuo, Zijie</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Ye, Min</creatorcontrib><creatorcontrib>Wen, Qi</creatorcontrib><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</description><subject>Adaptation models</subject><subject>AI forecasting model</subject><subject>Artificial neural networks</subject><subject>data driven</subject><subject>deep neural network</subject><subject>Earth</subject><subject>i.i.d. assumption</subject><subject>Predictive models</subject><subject>Sea surface temperature</subject><subject>Spatiotemporal phenomena</subject><subject>spatiotemporal sampling</subject><subject>Stability analysis</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj8FOwzAQRA0SUgv0DziYD0hY23HTHIGm0AM9kN4rt1nA4NiR7QqlX19XwJnLvJld7UpDyC2DnDGo7pZP969NI0VRypwDL3IG04JzVp2RSVVWMyFBTEFweU7GnEmRlQBiRC5D-ExmxgHG5DBH7OkK916ZhPjt_Ff2oAK2tFY-ftBmCBE7unAedypEbd_pi2vR0LrrjRtOeeVstrQt9pjERqps-zM7Jb1Txgx0rkP0eruP6XGj0imGa3LxpkzAyS-vyM2iXj8-ZxoRN73XnfLD5q-T-Gd9BM-NUgw</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Nie, Jie</creator><creator>Zuo, Zijie</creator><creator>Liang, Xinyue</creator><creator>Song, Ning</creator><creator>Ye, Min</creator><creator>Wen, Qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><author>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>AI forecasting model</topic><topic>Artificial neural networks</topic><topic>data driven</topic><topic>deep neural network</topic><topic>Earth</topic><topic>i.i.d. assumption</topic><topic>Predictive models</topic><topic>Sea surface temperature</topic><topic>Spatiotemporal phenomena</topic><topic>spatiotemporal sampling</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jie</creatorcontrib><creatorcontrib>Zuo, Zijie</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Ye, Min</creatorcontrib><creatorcontrib>Wen, Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Jie</au><au>Zuo, Zijie</au><au>Liang, Xinyue</au><au>Song, Ning</au><au>Ye, Min</au><au>Wen, Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>3018</spage><epage>3021</epage><pages>3018-3021</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642219</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3018-3021
issn 2153-7003
language eng
recordid cdi_ieee_primary_10642219
source IEEE Xplore All Conference Series
subjects Adaptation models
AI forecasting model
Artificial neural networks
data driven
deep neural network
Earth
i.i.d. assumption
Predictive models
Sea surface temperature
Spatiotemporal phenomena
spatiotemporal sampling
Stability analysis
title Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Neural%20Network-Based%20Earth%20System%20Forecasting%20Model%20Employing%20Non-Independent%20and%20Non-Identically%20Distributed%20Samples&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Nie,%20Jie&rft.date=2024-07-07&rft.spage=3018&rft.epage=3021&rft.pages=3018-3021&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642219&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642219%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642219&rfr_iscdi=true