Loading…
Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples
The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3021 |
container_issue | |
container_start_page | 3018 |
container_title | |
container_volume | |
creator | Nie, Jie Zuo, Zijie Liang, Xinyue Song, Ning Ye, Min Wen, Qi |
description | The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region. |
doi_str_mv | 10.1109/IGARSS53475.2024.10642219 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642219</ieee_id><sourcerecordid>10642219</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422193</originalsourceid><addsrcrecordid>eNqFj8FOwzAQRA0SUgv0DziYD0hY23HTHIGm0AM9kN4rt1nA4NiR7QqlX19XwJnLvJld7UpDyC2DnDGo7pZP969NI0VRypwDL3IG04JzVp2RSVVWMyFBTEFweU7GnEmRlQBiRC5D-ExmxgHG5DBH7OkK916ZhPjt_Ff2oAK2tFY-ftBmCBE7unAedypEbd_pi2vR0LrrjRtOeeVstrQt9pjERqps-zM7Jb1Txgx0rkP0eruP6XGj0imGa3LxpkzAyS-vyM2iXj8-ZxoRN73XnfLD5q-T-Gd9BM-NUgw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><source>IEEE Xplore All Conference Series</source><creator>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</creator><creatorcontrib>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</creatorcontrib><description>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642219</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; AI forecasting model ; Artificial neural networks ; data driven ; deep neural network ; Earth ; i.i.d. assumption ; Predictive models ; Sea surface temperature ; Spatiotemporal phenomena ; spatiotemporal sampling ; Stability analysis</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3018-3021</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Jie</creatorcontrib><creatorcontrib>Zuo, Zijie</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Ye, Min</creatorcontrib><creatorcontrib>Wen, Qi</creatorcontrib><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</description><subject>Adaptation models</subject><subject>AI forecasting model</subject><subject>Artificial neural networks</subject><subject>data driven</subject><subject>deep neural network</subject><subject>Earth</subject><subject>i.i.d. assumption</subject><subject>Predictive models</subject><subject>Sea surface temperature</subject><subject>Spatiotemporal phenomena</subject><subject>spatiotemporal sampling</subject><subject>Stability analysis</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj8FOwzAQRA0SUgv0DziYD0hY23HTHIGm0AM9kN4rt1nA4NiR7QqlX19XwJnLvJld7UpDyC2DnDGo7pZP969NI0VRypwDL3IG04JzVp2RSVVWMyFBTEFweU7GnEmRlQBiRC5D-ExmxgHG5DBH7OkK916ZhPjt_Ff2oAK2tFY-ftBmCBE7unAedypEbd_pi2vR0LrrjRtOeeVstrQt9pjERqps-zM7Jb1Txgx0rkP0eruP6XGj0imGa3LxpkzAyS-vyM2iXj8-ZxoRN73XnfLD5q-T-Gd9BM-NUgw</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Nie, Jie</creator><creator>Zuo, Zijie</creator><creator>Liang, Xinyue</creator><creator>Song, Ning</creator><creator>Ye, Min</creator><creator>Wen, Qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</title><author>Nie, Jie ; Zuo, Zijie ; Liang, Xinyue ; Song, Ning ; Ye, Min ; Wen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>AI forecasting model</topic><topic>Artificial neural networks</topic><topic>data driven</topic><topic>deep neural network</topic><topic>Earth</topic><topic>i.i.d. assumption</topic><topic>Predictive models</topic><topic>Sea surface temperature</topic><topic>Spatiotemporal phenomena</topic><topic>spatiotemporal sampling</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jie</creatorcontrib><creatorcontrib>Zuo, Zijie</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Ye, Min</creatorcontrib><creatorcontrib>Wen, Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Jie</au><au>Zuo, Zijie</au><au>Liang, Xinyue</au><au>Song, Ning</au><au>Ye, Min</au><au>Wen, Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>3018</spage><epage>3021</epage><pages>3018-3021</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>The sampling in the Earth system poses challenges to meeting the assumption of independent and identically distributed samples. However, existing deep neural network forecasting models inadequately address this issue, impacting the model's generalization and stability. To tackle this problem, this paper introduces the Non-Independent Sample Bias Elimination Module and the Non-Identically Distributed Prototype Modeling Module within the classical deep neural network forecasting framework. The effectiveness of the proposed approach is validated through forecasting experiments on sea surface temperature and sea surface height in the Chinese sea region.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642219</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3018-3021 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_10642219 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models AI forecasting model Artificial neural networks data driven deep neural network Earth i.i.d. assumption Predictive models Sea surface temperature Spatiotemporal phenomena spatiotemporal sampling Stability analysis |
title | Deep Neural Network-Based Earth System Forecasting Model Employing Non-Independent and Non-Identically Distributed Samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Neural%20Network-Based%20Earth%20System%20Forecasting%20Model%20Employing%20Non-Independent%20and%20Non-Identically%20Distributed%20Samples&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Nie,%20Jie&rft.date=2024-07-07&rft.spage=3018&rft.epage=3021&rft.pages=3018-3021&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642219&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642219%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642219&rfr_iscdi=true |