Loading…

Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping

Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as...

Full description

Saved in:
Bibliographic Details
Main Authors: Adugna, Tesfaye, Xu, Wenbo, Fan, Jinlong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10112
container_issue
container_start_page 10109
container_title
container_volume
creator Adugna, Tesfaye
Xu, Wenbo
Fan, Jinlong
description Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA >=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.
doi_str_mv 10.1109/IGARSS53475.2024.10642231
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642231</ieee_id><sourcerecordid>10642231</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422313</originalsourceid><addsrcrecordid>eNqFj81KAzEUhaMgWLVv4OL6AB1vkkmnsxxirQXtouO-XPROiaSTkIxFfXp_u3Z1PjiHD44QVxILKbG-Xi6addsaXVamUKjKQuK0VErLIzGuq3qmDeopamWOxUhJoycVoj4VZzm_fMFMIY7ERxOjd080uNBD6EDegF2tgPpn0L_YhQQ2UMoMa87Bv_5MWxrYezcwLHe0ZbCecnbdweR6mL8N3Ge3Z2gSE9x_K23Yc4IHitH12wtx0pHPPP7Lc3F5O3-0dxPHzJuY3I7S--bwSf9TfwJyFU-6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><source>IEEE Xplore All Conference Series</source><creator>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</creator><creatorcontrib>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</creatorcontrib><description>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA &gt;=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642231</identifier><language>eng</language><publisher>IEEE</publisher><subject>1D CNN ; 3D CNN ; Accuracy ; coarse-resolution ; land cover ; Land surface ; Machine learning ; Reflectivity ; Satellite images ; Solid modeling ; Three-dimensional displays ; time-series</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.10109-10112</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA &gt;=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</description><subject>1D CNN</subject><subject>3D CNN</subject><subject>Accuracy</subject><subject>coarse-resolution</subject><subject>land cover</subject><subject>Land surface</subject><subject>Machine learning</subject><subject>Reflectivity</subject><subject>Satellite images</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>time-series</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81KAzEUhaMgWLVv4OL6AB1vkkmnsxxirQXtouO-XPROiaSTkIxFfXp_u3Z1PjiHD44QVxILKbG-Xi6addsaXVamUKjKQuK0VErLIzGuq3qmDeopamWOxUhJoycVoj4VZzm_fMFMIY7ERxOjd080uNBD6EDegF2tgPpn0L_YhQQ2UMoMa87Bv_5MWxrYezcwLHe0ZbCecnbdweR6mL8N3Ge3Z2gSE9x_K23Yc4IHitH12wtx0pHPPP7Lc3F5O3-0dxPHzJuY3I7S--bwSf9TfwJyFU-6</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Adugna, Tesfaye</creator><creator>Xu, Wenbo</creator><creator>Fan, Jinlong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><author>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1D CNN</topic><topic>3D CNN</topic><topic>Accuracy</topic><topic>coarse-resolution</topic><topic>land cover</topic><topic>Land surface</topic><topic>Machine learning</topic><topic>Reflectivity</topic><topic>Satellite images</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>time-series</topic><toplevel>online_resources</toplevel><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adugna, Tesfaye</au><au>Xu, Wenbo</au><au>Fan, Jinlong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>10109</spage><epage>10112</epage><pages>10109-10112</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA &gt;=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642231</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.10109-10112
issn 2153-7003
language eng
recordid cdi_ieee_primary_10642231
source IEEE Xplore All Conference Series
subjects 1D CNN
3D CNN
Accuracy
coarse-resolution
land cover
Land surface
Machine learning
Reflectivity
Satellite images
Solid modeling
Three-dimensional displays
time-series
title Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%201D%20CNN%20and%203D%20CNN%20for%20Coarse%20Resolution%20Satellite%20Image%20Classification%20in%20Extensive%20Area%20Land%20Cover%20Mapping&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Adugna,%20Tesfaye&rft.date=2024-07-07&rft.spage=10109&rft.epage=10112&rft.pages=10109-10112&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642231&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642231%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642231&rfr_iscdi=true