Loading…
Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping
Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10112 |
container_issue | |
container_start_page | 10109 |
container_title | |
container_volume | |
creator | Adugna, Tesfaye Xu, Wenbo Fan, Jinlong |
description | Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA >=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification. |
doi_str_mv | 10.1109/IGARSS53475.2024.10642231 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642231</ieee_id><sourcerecordid>10642231</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422313</originalsourceid><addsrcrecordid>eNqFj81KAzEUhaMgWLVv4OL6AB1vkkmnsxxirQXtouO-XPROiaSTkIxFfXp_u3Z1PjiHD44QVxILKbG-Xi6addsaXVamUKjKQuK0VErLIzGuq3qmDeopamWOxUhJoycVoj4VZzm_fMFMIY7ERxOjd080uNBD6EDegF2tgPpn0L_YhQQ2UMoMa87Bv_5MWxrYezcwLHe0ZbCecnbdweR6mL8N3Ge3Z2gSE9x_K23Yc4IHitH12wtx0pHPPP7Lc3F5O3-0dxPHzJuY3I7S--bwSf9TfwJyFU-6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><source>IEEE Xplore All Conference Series</source><creator>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</creator><creatorcontrib>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</creatorcontrib><description>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA >=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642231</identifier><language>eng</language><publisher>IEEE</publisher><subject>1D CNN ; 3D CNN ; Accuracy ; coarse-resolution ; land cover ; Land surface ; Machine learning ; Reflectivity ; Satellite images ; Solid modeling ; Three-dimensional displays ; time-series</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.10109-10112</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA >=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</description><subject>1D CNN</subject><subject>3D CNN</subject><subject>Accuracy</subject><subject>coarse-resolution</subject><subject>land cover</subject><subject>Land surface</subject><subject>Machine learning</subject><subject>Reflectivity</subject><subject>Satellite images</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>time-series</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81KAzEUhaMgWLVv4OL6AB1vkkmnsxxirQXtouO-XPROiaSTkIxFfXp_u3Z1PjiHD44QVxILKbG-Xi6addsaXVamUKjKQuK0VErLIzGuq3qmDeopamWOxUhJoycVoj4VZzm_fMFMIY7ERxOjd080uNBD6EDegF2tgPpn0L_YhQQ2UMoMa87Bv_5MWxrYezcwLHe0ZbCecnbdweR6mL8N3Ge3Z2gSE9x_K23Yc4IHitH12wtx0pHPPP7Lc3F5O3-0dxPHzJuY3I7S--bwSf9TfwJyFU-6</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Adugna, Tesfaye</creator><creator>Xu, Wenbo</creator><creator>Fan, Jinlong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</title><author>Adugna, Tesfaye ; Xu, Wenbo ; Fan, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1D CNN</topic><topic>3D CNN</topic><topic>Accuracy</topic><topic>coarse-resolution</topic><topic>land cover</topic><topic>Land surface</topic><topic>Machine learning</topic><topic>Reflectivity</topic><topic>Satellite images</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>time-series</topic><toplevel>online_resources</toplevel><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adugna, Tesfaye</au><au>Xu, Wenbo</au><au>Fan, Jinlong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>10109</spage><epage>10112</epage><pages>10109-10112</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Convolutional Neural Networks (CNNs) have been applied effectively to classify high to medium-resolution imageries, especially for local scale land cover mapping, and attained high accuracy by outperforming the conventional machine learning techniques as the models incorporate spatial information as well as spectral reflectance values to differentiate objects.However, few studies have explored the effectiveness of CNN models for coarse-resolution satellite image classification. In this work, therefore, we applied 1D CNN and 3D CNN for time-series, coarse resolution (1km) FY-3C image classification in extensive area land cover mapping of a part of Eastern and North-East Africa.The result indicates both 1D CNN and 3D CNN models achieved high overall accuracy (OA >=85), although the former outperformed the latter significantly by 2-4%, indicating the superiority of pixel-based classification in time-series coarse resolution image classification.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642231</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.10109-10112 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_10642231 |
source | IEEE Xplore All Conference Series |
subjects | 1D CNN 3D CNN Accuracy coarse-resolution land cover Land surface Machine learning Reflectivity Satellite images Solid modeling Three-dimensional displays time-series |
title | Application of 1D CNN and 3D CNN for Coarse Resolution Satellite Image Classification in Extensive Area Land Cover Mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%201D%20CNN%20and%203D%20CNN%20for%20Coarse%20Resolution%20Satellite%20Image%20Classification%20in%20Extensive%20Area%20Land%20Cover%20Mapping&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Adugna,%20Tesfaye&rft.date=2024-07-07&rft.spage=10109&rft.epage=10112&rft.pages=10109-10112&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642231&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642231%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642231&rfr_iscdi=true |