Loading…

Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model

Clouds greatly affect the quality of optical remote-sensing image data. Algorithms for detecting and removing clouds can significantly enhance the utilization of optical data. Numerous studies highlight the crucial role of cirrus bands in cloud detection and removal, although only a few satellites p...

Full description

Saved in:
Bibliographic Details
Main Authors: Lyu, Haitao, Qian, Jiang, Wang, Yong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5552
container_issue
container_start_page 5549
container_title
container_volume
creator Lyu, Haitao
Qian, Jiang
Wang, Yong
description Clouds greatly affect the quality of optical remote-sensing image data. Algorithms for detecting and removing clouds can significantly enhance the utilization of optical data. Numerous studies highlight the crucial role of cirrus bands in cloud detection and removal, although only a few satellites possess this capability. In this research, a unified theory based on physical model is proposed and validated for thin cloud detection and removal. First, top of reflectance (TOA) values of thin clouds are detected in a specific band. Subsequently, the detected cloud image is used to remove thin clouds from other bands via spatial transformation. Experiments with actual Landsat-9 Operational Land Imager 2 (OLI-2) data confirm the effectiveness of the proposed approach both qualitatively and quantitatively. Even if thin clouds are undetectable in the cirrus bands, or cirrus bands are unavailable, this research still presents a novel paradigm for detecting and removing thin clouds.
doi_str_mv 10.1109/IGARSS53475.2024.10642238
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642238</ieee_id><sourcerecordid>10642238</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422383</originalsourceid><addsrcrecordid>eNqFjsuqwjAYhKMgeH0DF_EBrH-SxrZL8XoWB8R6OEuJ5i-N1EaaKvTtzULXrmb4ZgaGkAmDgDFIZj_bxSFNpQgjGXDgYcBgHnIu4hYZJVESCwliDoLLNulxJsU0AhBd0nfu6k3MAXrkP60fuqG2pHWO9K80mUFNjznaytPMO1PSZWEfmq6wxkttfFWVmh7wZp-qoGfl_MDDfd44c_Hk12oshqSTqcLh6K0DMt6sj8vd1CDi6V6Zm6qa0-ew-BK_ACjLRCo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model</title><source>IEEE Xplore All Conference Series</source><creator>Lyu, Haitao ; Qian, Jiang ; Wang, Yong</creator><creatorcontrib>Lyu, Haitao ; Qian, Jiang ; Wang, Yong</creatorcontrib><description>Clouds greatly affect the quality of optical remote-sensing image data. Algorithms for detecting and removing clouds can significantly enhance the utilization of optical data. Numerous studies highlight the crucial role of cirrus bands in cloud detection and removal, although only a few satellites possess this capability. In this research, a unified theory based on physical model is proposed and validated for thin cloud detection and removal. First, top of reflectance (TOA) values of thin clouds are detected in a specific band. Subsequently, the detected cloud image is used to remove thin clouds from other bands via spatial transformation. Experiments with actual Landsat-9 Operational Land Imager 2 (OLI-2) data confirm the effectiveness of the proposed approach both qualitatively and quantitatively. Even if thin clouds are undetectable in the cirrus bands, or cirrus bands are unavailable, this research still presents a novel paradigm for detecting and removing thin clouds.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642238</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial satellites ; Clouds ; detection ; Earth ; Optical imaging ; Optical reflection ; physical model ; Reflectivity ; removal ; Satellites ; Thin clouds</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.5549-5552</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642238$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642238$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lyu, Haitao</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Clouds greatly affect the quality of optical remote-sensing image data. Algorithms for detecting and removing clouds can significantly enhance the utilization of optical data. Numerous studies highlight the crucial role of cirrus bands in cloud detection and removal, although only a few satellites possess this capability. In this research, a unified theory based on physical model is proposed and validated for thin cloud detection and removal. First, top of reflectance (TOA) values of thin clouds are detected in a specific band. Subsequently, the detected cloud image is used to remove thin clouds from other bands via spatial transformation. Experiments with actual Landsat-9 Operational Land Imager 2 (OLI-2) data confirm the effectiveness of the proposed approach both qualitatively and quantitatively. Even if thin clouds are undetectable in the cirrus bands, or cirrus bands are unavailable, this research still presents a novel paradigm for detecting and removing thin clouds.</description><subject>Artificial satellites</subject><subject>Clouds</subject><subject>detection</subject><subject>Earth</subject><subject>Optical imaging</subject><subject>Optical reflection</subject><subject>physical model</subject><subject>Reflectivity</subject><subject>removal</subject><subject>Satellites</subject><subject>Thin clouds</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFjsuqwjAYhKMgeH0DF_EBrH-SxrZL8XoWB8R6OEuJ5i-N1EaaKvTtzULXrmb4ZgaGkAmDgDFIZj_bxSFNpQgjGXDgYcBgHnIu4hYZJVESCwliDoLLNulxJsU0AhBd0nfu6k3MAXrkP60fuqG2pHWO9K80mUFNjznaytPMO1PSZWEfmq6wxkttfFWVmh7wZp-qoGfl_MDDfd44c_Hk12oshqSTqcLh6K0DMt6sj8vd1CDi6V6Zm6qa0-ew-BK_ACjLRCo</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Lyu, Haitao</creator><creator>Qian, Jiang</creator><creator>Wang, Yong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model</title><author>Lyu, Haitao ; Qian, Jiang ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial satellites</topic><topic>Clouds</topic><topic>detection</topic><topic>Earth</topic><topic>Optical imaging</topic><topic>Optical reflection</topic><topic>physical model</topic><topic>Reflectivity</topic><topic>removal</topic><topic>Satellites</topic><topic>Thin clouds</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Haitao</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Haitao</au><au>Qian, Jiang</au><au>Wang, Yong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>5549</spage><epage>5552</epage><pages>5549-5552</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Clouds greatly affect the quality of optical remote-sensing image data. Algorithms for detecting and removing clouds can significantly enhance the utilization of optical data. Numerous studies highlight the crucial role of cirrus bands in cloud detection and removal, although only a few satellites possess this capability. In this research, a unified theory based on physical model is proposed and validated for thin cloud detection and removal. First, top of reflectance (TOA) values of thin clouds are detected in a specific band. Subsequently, the detected cloud image is used to remove thin clouds from other bands via spatial transformation. Experiments with actual Landsat-9 Operational Land Imager 2 (OLI-2) data confirm the effectiveness of the proposed approach both qualitatively and quantitatively. Even if thin clouds are undetectable in the cirrus bands, or cirrus bands are unavailable, this research still presents a novel paradigm for detecting and removing thin clouds.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642238</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.5549-5552
issn 2153-7003
language eng
recordid cdi_ieee_primary_10642238
source IEEE Xplore All Conference Series
subjects Artificial satellites
Clouds
detection
Earth
Optical imaging
Optical reflection
physical model
Reflectivity
removal
Satellites
Thin clouds
title Study on the Unified Theory of Thin Cloud Detection and Removal based on Physical Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20the%20Unified%20Theory%20of%20Thin%20Cloud%20Detection%20and%20Removal%20based%20on%20Physical%20Model&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Lyu,%20Haitao&rft.date=2024-07-07&rft.spage=5549&rft.epage=5552&rft.pages=5549-5552&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642238&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642238%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642238&rfr_iscdi=true