Loading…

Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles

Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street l...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Shengjie Kris, Wang, Siqin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3853
container_issue
container_start_page 3850
container_title
container_volume
creator Liu, Shengjie Kris
Wang, Siqin
description Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.
doi_str_mv 10.1109/IGARSS53475.2024.10642252
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642252</ieee_id><sourcerecordid>10642252</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422523</originalsourceid><addsrcrecordid>eNqFj81KxDAUhaMgOOq8gYvrA7SmSTOduivV0YEKg9H1cJm5LZG2KUmKdO2LOwVduzo_3-JwGLtLeJwkPL_fPhdvWiuZZioWXKRxwlepEEqcsWWe5WupuFxxKdQ5W4hEySjjXF6yK-8_T2YtOF-w743pKdIHbAlecRhM34CtYYcumMPYYpjrEMjBh59Zhf3RY4Bthw25CU4RKvsVldYH0NR76-ARA0LtbAe70Q0toXEPUECJnkCH8TjNC5X1UPQNteRv2EWNraflr16z283Te_kSGSLaD8506Kb93zn5D_4BLS5Teg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Shengjie Kris ; Wang, Siqin</creator><creatorcontrib>Liu, Shengjie Kris ; Wang, Siqin</creatorcontrib><description>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642252</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air pollution ; Atmospheric modeling ; Image sensors ; Landsat ; low-cost sensor ; multitask learning ; Neural networks ; particulate matter ; PurpleAir ; Sensors ; Training</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3850-3853</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shengjie Kris</creatorcontrib><creatorcontrib>Wang, Siqin</creatorcontrib><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</description><subject>Air pollution</subject><subject>Atmospheric modeling</subject><subject>Image sensors</subject><subject>Landsat</subject><subject>low-cost sensor</subject><subject>multitask learning</subject><subject>Neural networks</subject><subject>particulate matter</subject><subject>PurpleAir</subject><subject>Sensors</subject><subject>Training</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81KxDAUhaMgOOq8gYvrA7SmSTOduivV0YEKg9H1cJm5LZG2KUmKdO2LOwVduzo_3-JwGLtLeJwkPL_fPhdvWiuZZioWXKRxwlepEEqcsWWe5WupuFxxKdQ5W4hEySjjXF6yK-8_T2YtOF-w743pKdIHbAlecRhM34CtYYcumMPYYpjrEMjBh59Zhf3RY4Bthw25CU4RKvsVldYH0NR76-ARA0LtbAe70Q0toXEPUECJnkCH8TjNC5X1UPQNteRv2EWNraflr16z283Te_kSGSLaD8506Kb93zn5D_4BLS5Teg</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Liu, Shengjie Kris</creator><creator>Wang, Siqin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><author>Liu, Shengjie Kris ; Wang, Siqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Atmospheric modeling</topic><topic>Image sensors</topic><topic>Landsat</topic><topic>low-cost sensor</topic><topic>multitask learning</topic><topic>Neural networks</topic><topic>particulate matter</topic><topic>PurpleAir</topic><topic>Sensors</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shengjie Kris</creatorcontrib><creatorcontrib>Wang, Siqin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shengjie Kris</au><au>Wang, Siqin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>3850</spage><epage>3853</epage><pages>3850-3853</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642252</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3850-3853
issn 2153-7003
language eng
recordid cdi_ieee_primary_10642252
source IEEE Xplore All Conference Series
subjects Air pollution
Atmospheric modeling
Image sensors
Landsat
low-cost sensor
multitask learning
Neural networks
particulate matter
PurpleAir
Sensors
Training
title Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fine-Scale%20Mapping%20of%20Particulate%20Matter%20Using%20Landsat%20Imagery%20and%20Low-Cost%20Sensor%20Data%20from%20Purpleair:%20A%20Case%20Study%20of%20Los%20Angeles&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Liu,%20Shengjie%20Kris&rft.date=2024-07-07&rft.spage=3850&rft.epage=3853&rft.pages=3850-3853&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642252&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642252%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642252&rfr_iscdi=true