Loading…
Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles
Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street l...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3853 |
container_issue | |
container_start_page | 3850 |
container_title | |
container_volume | |
creator | Liu, Shengjie Kris Wang, Siqin |
description | Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring. |
doi_str_mv | 10.1109/IGARSS53475.2024.10642252 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642252</ieee_id><sourcerecordid>10642252</sourcerecordid><originalsourceid>FETCH-ieee_primary_106422523</originalsourceid><addsrcrecordid>eNqFj81KxDAUhaMgOOq8gYvrA7SmSTOduivV0YEKg9H1cJm5LZG2KUmKdO2LOwVduzo_3-JwGLtLeJwkPL_fPhdvWiuZZioWXKRxwlepEEqcsWWe5WupuFxxKdQ5W4hEySjjXF6yK-8_T2YtOF-w743pKdIHbAlecRhM34CtYYcumMPYYpjrEMjBh59Zhf3RY4Bthw25CU4RKvsVldYH0NR76-ARA0LtbAe70Q0toXEPUECJnkCH8TjNC5X1UPQNteRv2EWNraflr16z283Te_kSGSLaD8506Kb93zn5D_4BLS5Teg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Shengjie Kris ; Wang, Siqin</creator><creatorcontrib>Liu, Shengjie Kris ; Wang, Siqin</creatorcontrib><description>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642252</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air pollution ; Atmospheric modeling ; Image sensors ; Landsat ; low-cost sensor ; multitask learning ; Neural networks ; particulate matter ; PurpleAir ; Sensors ; Training</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3850-3853</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shengjie Kris</creatorcontrib><creatorcontrib>Wang, Siqin</creatorcontrib><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</description><subject>Air pollution</subject><subject>Atmospheric modeling</subject><subject>Image sensors</subject><subject>Landsat</subject><subject>low-cost sensor</subject><subject>multitask learning</subject><subject>Neural networks</subject><subject>particulate matter</subject><subject>PurpleAir</subject><subject>Sensors</subject><subject>Training</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj81KxDAUhaMgOOq8gYvrA7SmSTOduivV0YEKg9H1cJm5LZG2KUmKdO2LOwVduzo_3-JwGLtLeJwkPL_fPhdvWiuZZioWXKRxwlepEEqcsWWe5WupuFxxKdQ5W4hEySjjXF6yK-8_T2YtOF-w743pKdIHbAlecRhM34CtYYcumMPYYpjrEMjBh59Zhf3RY4Bthw25CU4RKvsVldYH0NR76-ARA0LtbAe70Q0toXEPUECJnkCH8TjNC5X1UPQNteRv2EWNraflr16z283Te_kSGSLaD8506Kb93zn5D_4BLS5Teg</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Liu, Shengjie Kris</creator><creator>Wang, Siqin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</title><author>Liu, Shengjie Kris ; Wang, Siqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106422523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Atmospheric modeling</topic><topic>Image sensors</topic><topic>Landsat</topic><topic>low-cost sensor</topic><topic>multitask learning</topic><topic>Neural networks</topic><topic>particulate matter</topic><topic>PurpleAir</topic><topic>Sensors</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shengjie Kris</creatorcontrib><creatorcontrib>Wang, Siqin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shengjie Kris</au><au>Wang, Siqin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>3850</spage><epage>3853</epage><pages>3850-3853</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Fine-scale monitoring of particulate matter (PM) is essential to assess the patterns and sources of air pollution. However, to this date, its usage is still limited. In this study, we explore the usage of Landsat imagery for PM mapping at 30 m spatial resolution, where air pollutants at the street level can be distinguished. With in-situ data from the low-cost sensors of the PurpleAir network, we developed a multitask neural network that can simultaneously estimate all three metrics of PM, i.e., PM1, PM2.5, and PM10. With 936 monitoring stations from 25 dates, a total of 15,250 valid observations were used to construct the model. With external validation, results show that the model can achieve R 2 of 0.767, 0.803, and 0.799 in estimating PM1, PM2.5, and PM10, respectively, at the street level. Using one multitask neural network to predict PM1, PM2.5, and PM10 improves the efficiency of real-life air pollutant monitoring.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642252</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.3850-3853 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_10642252 |
source | IEEE Xplore All Conference Series |
subjects | Air pollution Atmospheric modeling Image sensors Landsat low-cost sensor multitask learning Neural networks particulate matter PurpleAir Sensors Training |
title | Fine-Scale Mapping of Particulate Matter Using Landsat Imagery and Low-Cost Sensor Data from Purpleair: A Case Study of Los Angeles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fine-Scale%20Mapping%20of%20Particulate%20Matter%20Using%20Landsat%20Imagery%20and%20Low-Cost%20Sensor%20Data%20from%20Purpleair:%20A%20Case%20Study%20of%20Los%20Angeles&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Liu,%20Shengjie%20Kris&rft.date=2024-07-07&rft.spage=3850&rft.epage=3853&rft.pages=3850-3853&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642252&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642252%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106422523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642252&rfr_iscdi=true |