Loading…
Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing
Change detection (CD) is a crucial application in the field of remote sensing. Most current CD methods are based on deep learning and revolve around multispectral data. However, a common issue arising from these methods is the large number of model parameters due to the high dimensionality of the da...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8400 |
container_issue | |
container_start_page | 8397 |
container_title | |
container_volume | |
creator | Huang, Yankun Wei, Maosheng Ge, Baoyu Zhang, Yun Ji, Zhenyuan |
description | Change detection (CD) is a crucial application in the field of remote sensing. Most current CD methods are based on deep learning and revolve around multispectral data. However, a common issue arising from these methods is the large number of model parameters due to the high dimensionality of the data channels. In this paper, we propose a lightweight Siamese network structure that minimally incorporates conventional convolutional layers. Additionally, in terms of data preprocessing, we select the R, G, and B channels of multispectral data for dehazing processing, and employ the processed data as inputs to the network. Experimental results illustrate the outstanding effectiveness and efficiency of the proposed method. |
doi_str_mv | 10.1109/IGARSS53475.2024.10642488 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10642488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10642488</ieee_id><sourcerecordid>10642488</sourcerecordid><originalsourceid>FETCH-ieee_primary_106424883</originalsourceid><addsrcrecordid>eNqFj91Kw0AUhFdBsNa-gRfHB0jcn2yTXGpTf6CINL0vh3qSrCbZsLsa-vY2oNfezAzM8MEwdit4LATP716e7rdlqVWS6lhymcSCLxOZZNkZW-RpninN1ZIrqc_ZTAqtopRzdcmuvP84hUxyPmPHVYN9TVBQoEMwtgfTQ_GFbbSjbrAOW9hSZwNBSb03fQ0FBoQH9PQOpzXCxtRNGGlSKA125AleKYzWfcJoQgPrqprQ3wRvjgZnD-Qn0DW7qLD1tPj1Obt5XO9Wz5Ehov3gTIfuuP-7pP6pfwA_71Fp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing</title><source>IEEE Xplore All Conference Series</source><creator>Huang, Yankun ; Wei, Maosheng ; Ge, Baoyu ; Zhang, Yun ; Ji, Zhenyuan</creator><creatorcontrib>Huang, Yankun ; Wei, Maosheng ; Ge, Baoyu ; Zhang, Yun ; Ji, Zhenyuan</creatorcontrib><description>Change detection (CD) is a crucial application in the field of remote sensing. Most current CD methods are based on deep learning and revolve around multispectral data. However, a common issue arising from these methods is the large number of model parameters due to the high dimensionality of the data channels. In this paper, we propose a lightweight Siamese network structure that minimally incorporates conventional convolutional layers. Additionally, in terms of data preprocessing, we select the R, G, and B channels of multispectral data for dehazing processing, and employ the processed data as inputs to the network. Experimental results illustrate the outstanding effectiveness and efficiency of the proposed method.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350360325</identifier><identifier>DOI: 10.1109/IGARSS53475.2024.10642488</identifier><language>eng</language><publisher>IEEE</publisher><subject>change detection (CD) ; Data models ; Data preprocessing ; Deep learning ; Feature extraction ; lightweight network ; Network architecture ; Remote sensing</subject><ispartof>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.8397-8400</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10642488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10642488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yankun</creatorcontrib><creatorcontrib>Wei, Maosheng</creatorcontrib><creatorcontrib>Ge, Baoyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><title>Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing</title><title>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Change detection (CD) is a crucial application in the field of remote sensing. Most current CD methods are based on deep learning and revolve around multispectral data. However, a common issue arising from these methods is the large number of model parameters due to the high dimensionality of the data channels. In this paper, we propose a lightweight Siamese network structure that minimally incorporates conventional convolutional layers. Additionally, in terms of data preprocessing, we select the R, G, and B channels of multispectral data for dehazing processing, and employ the processed data as inputs to the network. Experimental results illustrate the outstanding effectiveness and efficiency of the proposed method.</description><subject>change detection (CD)</subject><subject>Data models</subject><subject>Data preprocessing</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>lightweight network</subject><subject>Network architecture</subject><subject>Remote sensing</subject><issn>2153-7003</issn><isbn>9798350360325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFj91Kw0AUhFdBsNa-gRfHB0jcn2yTXGpTf6CINL0vh3qSrCbZsLsa-vY2oNfezAzM8MEwdit4LATP716e7rdlqVWS6lhymcSCLxOZZNkZW-RpninN1ZIrqc_ZTAqtopRzdcmuvP84hUxyPmPHVYN9TVBQoEMwtgfTQ_GFbbSjbrAOW9hSZwNBSb03fQ0FBoQH9PQOpzXCxtRNGGlSKA125AleKYzWfcJoQgPrqprQ3wRvjgZnD-Qn0DW7qLD1tPj1Obt5XO9Wz5Ehov3gTIfuuP-7pP6pfwA_71Fp</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Huang, Yankun</creator><creator>Wei, Maosheng</creator><creator>Ge, Baoyu</creator><creator>Zhang, Yun</creator><creator>Ji, Zhenyuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240707</creationdate><title>Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing</title><author>Huang, Yankun ; Wei, Maosheng ; Ge, Baoyu ; Zhang, Yun ; Ji, Zhenyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106424883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>change detection (CD)</topic><topic>Data models</topic><topic>Data preprocessing</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>lightweight network</topic><topic>Network architecture</topic><topic>Remote sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yankun</creatorcontrib><creatorcontrib>Wei, Maosheng</creatorcontrib><creatorcontrib>Ge, Baoyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yankun</au><au>Wei, Maosheng</au><au>Ge, Baoyu</au><au>Zhang, Yun</au><au>Ji, Zhenyuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing</atitle><btitle>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>8397</spage><epage>8400</epage><pages>8397-8400</pages><eissn>2153-7003</eissn><eisbn>9798350360325</eisbn><abstract>Change detection (CD) is a crucial application in the field of remote sensing. Most current CD methods are based on deep learning and revolve around multispectral data. However, a common issue arising from these methods is the large number of model parameters due to the high dimensionality of the data channels. In this paper, we propose a lightweight Siamese network structure that minimally incorporates conventional convolutional layers. Additionally, in terms of data preprocessing, we select the R, G, and B channels of multispectral data for dehazing processing, and employ the processed data as inputs to the network. Experimental results illustrate the outstanding effectiveness and efficiency of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS53475.2024.10642488</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, p.8397-8400 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_10642488 |
source | IEEE Xplore All Conference Series |
subjects | change detection (CD) Data models Data preprocessing Deep learning Feature extraction lightweight network Network architecture Remote sensing |
title | Change Detection in Dual-Temporal Remote Sensing Data Based on a Lightweight Siamese Network with Effective Preprocessing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Change%20Detection%20in%20Dual-Temporal%20Remote%20Sensing%20Data%20Based%20on%20a%20Lightweight%20Siamese%20Network%20with%20Effective%20Preprocessing&rft.btitle=IGARSS%202024%20-%202024%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Huang,%20Yankun&rft.date=2024-07-07&rft.spage=8397&rft.epage=8400&rft.pages=8397-8400&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS53475.2024.10642488&rft.eisbn=9798350360325&rft_dat=%3Cieee_CHZPO%3E10642488%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106424883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10642488&rfr_iscdi=true |