Loading…
Resource Efficient Bayesian Optimization
We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fac...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 19 |
container_issue | |
container_start_page | 12 |
container_title | |
container_volume | |
creator | Juneja, Namit Chandola, Varun Zola, Jaroslaw Wodo, Olga Desai, Parth |
description | We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications. |
doi_str_mv | 10.1109/CLOUD62652.2024.00012 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10643903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643903</ieee_id><sourcerecordid>10643903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPEoCI7Zb6DQo5fW90_zpjlq3VQoFMSdR5olEHHdaOthfnoVPT2Xh59SNwglIti7pu02j0KiqSSgqgQApDOVWWNr1sBSa5ZztSDUthC0cKmyaXr_3aDWGnmhbl_DdPgcfchXMSafwjDnD-4UpuSGvDvOaZ--3JwOw5W6iO5jCtl_l2qzXr01z0XbPb00922REGQuxO-gAsOhR_K9oIDpud85whoIrRC6SMTOiwbvIvQMhjCaYNByiMJLdf3nphDC9jimvRtP2x-7YgvM38VCQdY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Resource Efficient Bayesian Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</creator><creatorcontrib>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</creatorcontrib><description>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</description><identifier>EISSN: 2159-6190</identifier><identifier>EISBN: 9798350368536</identifier><identifier>DOI: 10.1109/CLOUD62652.2024.00012</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>active learning ; Bayes methods ; Bayesian optimization ; Cloud computing ; Computational modeling ; Costs ; Expected Improvement ; Gaussian processes ; Machine learning ; Optimization methods ; Resource-efficient op-timization ; Training</subject><ispartof>2024 IEEE 17th International Conference on Cloud Computing (CLOUD), 2024, p.12-19</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><creatorcontrib>Desai, Parth</creatorcontrib><title>Resource Efficient Bayesian Optimization</title><title>2024 IEEE 17th International Conference on Cloud Computing (CLOUD)</title><addtitle>CLOUD</addtitle><description>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</description><subject>active learning</subject><subject>Bayes methods</subject><subject>Bayesian optimization</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Expected Improvement</subject><subject>Gaussian processes</subject><subject>Machine learning</subject><subject>Optimization methods</subject><subject>Resource-efficient op-timization</subject><subject>Training</subject><issn>2159-6190</issn><isbn>9798350368536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE9LwzAYgPEoCI7Zb6DQo5fW90_zpjlq3VQoFMSdR5olEHHdaOthfnoVPT2Xh59SNwglIti7pu02j0KiqSSgqgQApDOVWWNr1sBSa5ZztSDUthC0cKmyaXr_3aDWGnmhbl_DdPgcfchXMSafwjDnD-4UpuSGvDvOaZ--3JwOw5W6iO5jCtl_l2qzXr01z0XbPb00922REGQuxO-gAsOhR_K9oIDpud85whoIrRC6SMTOiwbvIvQMhjCaYNByiMJLdf3nphDC9jimvRtP2x-7YgvM38VCQdY</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Juneja, Namit</creator><creator>Chandola, Varun</creator><creator>Zola, Jaroslaw</creator><creator>Wodo, Olga</creator><creator>Desai, Parth</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240707</creationdate><title>Resource Efficient Bayesian Optimization</title><author>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active learning</topic><topic>Bayes methods</topic><topic>Bayesian optimization</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Expected Improvement</topic><topic>Gaussian processes</topic><topic>Machine learning</topic><topic>Optimization methods</topic><topic>Resource-efficient op-timization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><creatorcontrib>Desai, Parth</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juneja, Namit</au><au>Chandola, Varun</au><au>Zola, Jaroslaw</au><au>Wodo, Olga</au><au>Desai, Parth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Resource Efficient Bayesian Optimization</atitle><btitle>2024 IEEE 17th International Conference on Cloud Computing (CLOUD)</btitle><stitle>CLOUD</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>12</spage><epage>19</epage><pages>12-19</pages><eissn>2159-6190</eissn><eisbn>9798350368536</eisbn><coden>IEEPAD</coden><abstract>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</abstract><pub>IEEE</pub><doi>10.1109/CLOUD62652.2024.00012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-6190 |
ispartof | 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), 2024, p.12-19 |
issn | 2159-6190 |
language | eng |
recordid | cdi_ieee_primary_10643903 |
source | IEEE Xplore All Conference Series |
subjects | active learning Bayes methods Bayesian optimization Cloud computing Computational modeling Costs Expected Improvement Gaussian processes Machine learning Optimization methods Resource-efficient op-timization Training |
title | Resource Efficient Bayesian Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Resource%20Efficient%20Bayesian%20Optimization&rft.btitle=2024%20IEEE%2017th%20International%20Conference%20on%20Cloud%20Computing%20(CLOUD)&rft.au=Juneja,%20Namit&rft.date=2024-07-07&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.eissn=2159-6190&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CLOUD62652.2024.00012&rft.eisbn=9798350368536&rft_dat=%3Cieee_CHZPO%3E10643903%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643903&rfr_iscdi=true |