Loading…

Resource Efficient Bayesian Optimization

We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fac...

Full description

Saved in:
Bibliographic Details
Main Authors: Juneja, Namit, Chandola, Varun, Zola, Jaroslaw, Wodo, Olga, Desai, Parth
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 19
container_issue
container_start_page 12
container_title
container_volume
creator Juneja, Namit
Chandola, Varun
Zola, Jaroslaw
Wodo, Olga
Desai, Parth
description We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.
doi_str_mv 10.1109/CLOUD62652.2024.00012
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10643903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643903</ieee_id><sourcerecordid>10643903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPEoCI7Zb6DQo5fW90_zpjlq3VQoFMSdR5olEHHdaOthfnoVPT2Xh59SNwglIti7pu02j0KiqSSgqgQApDOVWWNr1sBSa5ZztSDUthC0cKmyaXr_3aDWGnmhbl_DdPgcfchXMSafwjDnD-4UpuSGvDvOaZ--3JwOw5W6iO5jCtl_l2qzXr01z0XbPb00922REGQuxO-gAsOhR_K9oIDpud85whoIrRC6SMTOiwbvIvQMhjCaYNByiMJLdf3nphDC9jimvRtP2x-7YgvM38VCQdY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Resource Efficient Bayesian Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</creator><creatorcontrib>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</creatorcontrib><description>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</description><identifier>EISSN: 2159-6190</identifier><identifier>EISBN: 9798350368536</identifier><identifier>DOI: 10.1109/CLOUD62652.2024.00012</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>active learning ; Bayes methods ; Bayesian optimization ; Cloud computing ; Computational modeling ; Costs ; Expected Improvement ; Gaussian processes ; Machine learning ; Optimization methods ; Resource-efficient op-timization ; Training</subject><ispartof>2024 IEEE 17th International Conference on Cloud Computing (CLOUD), 2024, p.12-19</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><creatorcontrib>Desai, Parth</creatorcontrib><title>Resource Efficient Bayesian Optimization</title><title>2024 IEEE 17th International Conference on Cloud Computing (CLOUD)</title><addtitle>CLOUD</addtitle><description>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</description><subject>active learning</subject><subject>Bayes methods</subject><subject>Bayesian optimization</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Expected Improvement</subject><subject>Gaussian processes</subject><subject>Machine learning</subject><subject>Optimization methods</subject><subject>Resource-efficient op-timization</subject><subject>Training</subject><issn>2159-6190</issn><isbn>9798350368536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE9LwzAYgPEoCI7Zb6DQo5fW90_zpjlq3VQoFMSdR5olEHHdaOthfnoVPT2Xh59SNwglIti7pu02j0KiqSSgqgQApDOVWWNr1sBSa5ZztSDUthC0cKmyaXr_3aDWGnmhbl_DdPgcfchXMSafwjDnD-4UpuSGvDvOaZ--3JwOw5W6iO5jCtl_l2qzXr01z0XbPb00922REGQuxO-gAsOhR_K9oIDpud85whoIrRC6SMTOiwbvIvQMhjCaYNByiMJLdf3nphDC9jimvRtP2x-7YgvM38VCQdY</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Juneja, Namit</creator><creator>Chandola, Varun</creator><creator>Zola, Jaroslaw</creator><creator>Wodo, Olga</creator><creator>Desai, Parth</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240707</creationdate><title>Resource Efficient Bayesian Optimization</title><author>Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga ; Desai, Parth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active learning</topic><topic>Bayes methods</topic><topic>Bayesian optimization</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Expected Improvement</topic><topic>Gaussian processes</topic><topic>Machine learning</topic><topic>Optimization methods</topic><topic>Resource-efficient op-timization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><creatorcontrib>Desai, Parth</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juneja, Namit</au><au>Chandola, Varun</au><au>Zola, Jaroslaw</au><au>Wodo, Olga</au><au>Desai, Parth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Resource Efficient Bayesian Optimization</atitle><btitle>2024 IEEE 17th International Conference on Cloud Computing (CLOUD)</btitle><stitle>CLOUD</stitle><date>2024-07-07</date><risdate>2024</risdate><spage>12</spage><epage>19</epage><pages>12-19</pages><eissn>2159-6190</eissn><eisbn>9798350368536</eisbn><coden>IEEPAD</coden><abstract>We propose a resource-efficient Bayesian Optimization (BO) formulation that can provide the same convergence guarantees as traditional BO, while ensuring that the opti-mization makes efficient use of the available cloud or high-performance computing (HPC) resources. The paper is motivated by the fact that for many optimization problems that lend themselves well to BO, like hyper-parameter optimization for training large machine learning models, the single function evaluation cost depends on the model parameters as well as system parameters. The proposed Resource Efficient Bayesian Optimization (REBO) algorithm is a novel formulation that exploits this dependence and provides significant cost benefits for users who want to deploy BO on cloud and HPC resources that are characterized by availability of compute resources with varying costs and expected performance benefits. We demonstrate the effectiveness of REBO, in terms of convergence and resource-efficiency, on a variety of machine learning hyper-parameter optimization applications.</abstract><pub>IEEE</pub><doi>10.1109/CLOUD62652.2024.00012</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-6190
ispartof 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), 2024, p.12-19
issn 2159-6190
language eng
recordid cdi_ieee_primary_10643903
source IEEE Xplore All Conference Series
subjects active learning
Bayes methods
Bayesian optimization
Cloud computing
Computational modeling
Costs
Expected Improvement
Gaussian processes
Machine learning
Optimization methods
Resource-efficient op-timization
Training
title Resource Efficient Bayesian Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Resource%20Efficient%20Bayesian%20Optimization&rft.btitle=2024%20IEEE%2017th%20International%20Conference%20on%20Cloud%20Computing%20(CLOUD)&rft.au=Juneja,%20Namit&rft.date=2024-07-07&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.eissn=2159-6190&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CLOUD62652.2024.00012&rft.eisbn=9798350368536&rft_dat=%3Cieee_CHZPO%3E10643903%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-6cd04073eb12cb61607b3bda2180219621af223ac650caf0b30721f7e7193ef63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643903&rfr_iscdi=true