Loading…

Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment

A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-...

Full description

Saved in:
Bibliographic Details
Main Authors: Garcia A., Omar A., Arana, Diego Chavez, Espinoza, Eduardo S., Scola, Ignacio Rubio, Garcia Carrillo, Luis Rodolfo, Sornborger, Andrew T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3129
container_issue
container_start_page 3124
container_title
container_volume
creator Garcia A., Omar A.
Arana, Diego Chavez
Espinoza, Eduardo S.
Scola, Ignacio Rubio
Garcia Carrillo, Luis Rodolfo
Sornborger, Andrew T.
description A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.
doi_str_mv 10.23919/ACC60939.2024.10644419
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10644419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644419</ieee_id><sourcerecordid>10644419</sourcerecordid><originalsourceid>FETCH-ieee_primary_106444193</originalsourceid><addsrcrecordid>eNqFT8tKAzEUjYJg1f6BYH5gxjxmppNlDS1142Z0XQLe1tjkZkgySl365Uaoa1eH84RDyB1ntZCKq_ul1h1TUtWCiabmrGuahqszMlcL1cuWyV50bXtOZkIu-qrtO35JrlJ6Z4wr1bEZ-R5Ge7C4p08wReMK5M8QD9WDSfBKdcAcg6NhRw3SF_QGschLiLZkh2PK4OmjHx14wFycgNRQPaUcvP0q_LS6dnb_lulg_eRMtiW1wg8bA_7WbsjFzrgE8xNek9v16llvKgsA2zFab-Jx-_dN_mP_AAfOVJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><source>IEEE Xplore All Conference Series</source><creator>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</creator><creatorcontrib>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</creatorcontrib><description>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9798350382655</identifier><identifier>DOI: 10.23919/ACC60939.2024.10644419</identifier><language>eng</language><publisher>AACC</publisher><subject>Aerospace simulation ; Heuristic algorithms ; Neuromorphics ; Regulation ; Spiking neural networks ; Stability analysis ; Trajectory tracking</subject><ispartof>2024 American Control Conference (ACC), 2024, p.3124-3129</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia A., Omar A.</creatorcontrib><creatorcontrib>Arana, Diego Chavez</creatorcontrib><creatorcontrib>Espinoza, Eduardo S.</creatorcontrib><creatorcontrib>Scola, Ignacio Rubio</creatorcontrib><creatorcontrib>Garcia Carrillo, Luis Rodolfo</creatorcontrib><creatorcontrib>Sornborger, Andrew T.</creatorcontrib><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><title>2024 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</description><subject>Aerospace simulation</subject><subject>Heuristic algorithms</subject><subject>Neuromorphics</subject><subject>Regulation</subject><subject>Spiking neural networks</subject><subject>Stability analysis</subject><subject>Trajectory tracking</subject><issn>2378-5861</issn><isbn>9798350382655</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFT8tKAzEUjYJg1f6BYH5gxjxmppNlDS1142Z0XQLe1tjkZkgySl365Uaoa1eH84RDyB1ntZCKq_ul1h1TUtWCiabmrGuahqszMlcL1cuWyV50bXtOZkIu-qrtO35JrlJ6Z4wr1bEZ-R5Ge7C4p08wReMK5M8QD9WDSfBKdcAcg6NhRw3SF_QGschLiLZkh2PK4OmjHx14wFycgNRQPaUcvP0q_LS6dnb_lulg_eRMtiW1wg8bA_7WbsjFzrgE8xNek9v16llvKgsA2zFab-Jx-_dN_mP_AAfOVJQ</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Garcia A., Omar A.</creator><creator>Arana, Diego Chavez</creator><creator>Espinoza, Eduardo S.</creator><creator>Scola, Ignacio Rubio</creator><creator>Garcia Carrillo, Luis Rodolfo</creator><creator>Sornborger, Andrew T.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240710</creationdate><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><author>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106444193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace simulation</topic><topic>Heuristic algorithms</topic><topic>Neuromorphics</topic><topic>Regulation</topic><topic>Spiking neural networks</topic><topic>Stability analysis</topic><topic>Trajectory tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia A., Omar A.</creatorcontrib><creatorcontrib>Arana, Diego Chavez</creatorcontrib><creatorcontrib>Espinoza, Eduardo S.</creatorcontrib><creatorcontrib>Scola, Ignacio Rubio</creatorcontrib><creatorcontrib>Garcia Carrillo, Luis Rodolfo</creatorcontrib><creatorcontrib>Sornborger, Andrew T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia A., Omar A.</au><au>Arana, Diego Chavez</au><au>Espinoza, Eduardo S.</au><au>Scola, Ignacio Rubio</au><au>Garcia Carrillo, Luis Rodolfo</au><au>Sornborger, Andrew T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</atitle><btitle>2024 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2024-07-10</date><risdate>2024</risdate><spage>3124</spage><epage>3129</epage><pages>3124-3129</pages><eissn>2378-5861</eissn><eisbn>9798350382655</eisbn><abstract>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</abstract><pub>AACC</pub><doi>10.23919/ACC60939.2024.10644419</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2024 American Control Conference (ACC), 2024, p.3124-3129
issn 2378-5861
language eng
recordid cdi_ieee_primary_10644419
source IEEE Xplore All Conference Series
subjects Aerospace simulation
Heuristic algorithms
Neuromorphics
Regulation
Spiking neural networks
Stability analysis
Trajectory tracking
title Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spiking%20Neural%20Network-Based%20Control%20of%20an%20Unmanned%20Aerial%20System%20Implemented%20on%20a%20Customized%20Neural%20Flight%20Simulation%20Environment&rft.btitle=2024%20American%20Control%20Conference%20(ACC)&rft.au=Garcia%20A.,%20Omar%20A.&rft.date=2024-07-10&rft.spage=3124&rft.epage=3129&rft.pages=3124-3129&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC60939.2024.10644419&rft.eisbn=9798350382655&rft_dat=%3Cieee_CHZPO%3E10644419%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106444193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10644419&rfr_iscdi=true