Loading…
Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment
A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3129 |
container_issue | |
container_start_page | 3124 |
container_title | |
container_volume | |
creator | Garcia A., Omar A. Arana, Diego Chavez Espinoza, Eduardo S. Scola, Ignacio Rubio Garcia Carrillo, Luis Rodolfo Sornborger, Andrew T. |
description | A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks. |
doi_str_mv | 10.23919/ACC60939.2024.10644419 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10644419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644419</ieee_id><sourcerecordid>10644419</sourcerecordid><originalsourceid>FETCH-ieee_primary_106444193</originalsourceid><addsrcrecordid>eNqFT8tKAzEUjYJg1f6BYH5gxjxmppNlDS1142Z0XQLe1tjkZkgySl365Uaoa1eH84RDyB1ntZCKq_ul1h1TUtWCiabmrGuahqszMlcL1cuWyV50bXtOZkIu-qrtO35JrlJ6Z4wr1bEZ-R5Ge7C4p08wReMK5M8QD9WDSfBKdcAcg6NhRw3SF_QGschLiLZkh2PK4OmjHx14wFycgNRQPaUcvP0q_LS6dnb_lulg_eRMtiW1wg8bA_7WbsjFzrgE8xNek9v16llvKgsA2zFab-Jx-_dN_mP_AAfOVJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><source>IEEE Xplore All Conference Series</source><creator>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</creator><creatorcontrib>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</creatorcontrib><description>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9798350382655</identifier><identifier>DOI: 10.23919/ACC60939.2024.10644419</identifier><language>eng</language><publisher>AACC</publisher><subject>Aerospace simulation ; Heuristic algorithms ; Neuromorphics ; Regulation ; Spiking neural networks ; Stability analysis ; Trajectory tracking</subject><ispartof>2024 American Control Conference (ACC), 2024, p.3124-3129</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia A., Omar A.</creatorcontrib><creatorcontrib>Arana, Diego Chavez</creatorcontrib><creatorcontrib>Espinoza, Eduardo S.</creatorcontrib><creatorcontrib>Scola, Ignacio Rubio</creatorcontrib><creatorcontrib>Garcia Carrillo, Luis Rodolfo</creatorcontrib><creatorcontrib>Sornborger, Andrew T.</creatorcontrib><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><title>2024 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</description><subject>Aerospace simulation</subject><subject>Heuristic algorithms</subject><subject>Neuromorphics</subject><subject>Regulation</subject><subject>Spiking neural networks</subject><subject>Stability analysis</subject><subject>Trajectory tracking</subject><issn>2378-5861</issn><isbn>9798350382655</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFT8tKAzEUjYJg1f6BYH5gxjxmppNlDS1142Z0XQLe1tjkZkgySl365Uaoa1eH84RDyB1ntZCKq_ul1h1TUtWCiabmrGuahqszMlcL1cuWyV50bXtOZkIu-qrtO35JrlJ6Z4wr1bEZ-R5Ge7C4p08wReMK5M8QD9WDSfBKdcAcg6NhRw3SF_QGschLiLZkh2PK4OmjHx14wFycgNRQPaUcvP0q_LS6dnb_lulg_eRMtiW1wg8bA_7WbsjFzrgE8xNek9v16llvKgsA2zFab-Jx-_dN_mP_AAfOVJQ</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Garcia A., Omar A.</creator><creator>Arana, Diego Chavez</creator><creator>Espinoza, Eduardo S.</creator><creator>Scola, Ignacio Rubio</creator><creator>Garcia Carrillo, Luis Rodolfo</creator><creator>Sornborger, Andrew T.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240710</creationdate><title>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</title><author>Garcia A., Omar A. ; Arana, Diego Chavez ; Espinoza, Eduardo S. ; Scola, Ignacio Rubio ; Garcia Carrillo, Luis Rodolfo ; Sornborger, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106444193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace simulation</topic><topic>Heuristic algorithms</topic><topic>Neuromorphics</topic><topic>Regulation</topic><topic>Spiking neural networks</topic><topic>Stability analysis</topic><topic>Trajectory tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia A., Omar A.</creatorcontrib><creatorcontrib>Arana, Diego Chavez</creatorcontrib><creatorcontrib>Espinoza, Eduardo S.</creatorcontrib><creatorcontrib>Scola, Ignacio Rubio</creatorcontrib><creatorcontrib>Garcia Carrillo, Luis Rodolfo</creatorcontrib><creatorcontrib>Sornborger, Andrew T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia A., Omar A.</au><au>Arana, Diego Chavez</au><au>Espinoza, Eduardo S.</au><au>Scola, Ignacio Rubio</au><au>Garcia Carrillo, Luis Rodolfo</au><au>Sornborger, Andrew T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment</atitle><btitle>2024 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2024-07-10</date><risdate>2024</risdate><spage>3124</spage><epage>3129</epage><pages>3124-3129</pages><eissn>2378-5861</eissn><eisbn>9798350382655</eisbn><abstract>A prototyping environment for the development of Spiking Neural Networks (SNN) is integrated with a physics-based flight simulator with the objective of stabilizing a quad rotorcraft Unmanned Aerial System (UAS) via neuromorphic controllers. Making use of the Neural Engineering Framework (NEF), SNN-based Proportional+Derivative (PD) controllers are designed for the translational and rotational dynamics of the UAS. An online Model in the Loop (MIL) evaluation scenario was implemented, showing that the proposed neuromorphic controllers are capable of stabilizing the quad rotorcraft UAS in both regulation and trajectory tracking tasks.</abstract><pub>AACC</pub><doi>10.23919/ACC60939.2024.10644419</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2024 American Control Conference (ACC), 2024, p.3124-3129 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_10644419 |
source | IEEE Xplore All Conference Series |
subjects | Aerospace simulation Heuristic algorithms Neuromorphics Regulation Spiking neural networks Stability analysis Trajectory tracking |
title | Spiking Neural Network-Based Control of an Unmanned Aerial System Implemented on a Customized Neural Flight Simulation Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spiking%20Neural%20Network-Based%20Control%20of%20an%20Unmanned%20Aerial%20System%20Implemented%20on%20a%20Customized%20Neural%20Flight%20Simulation%20Environment&rft.btitle=2024%20American%20Control%20Conference%20(ACC)&rft.au=Garcia%20A.,%20Omar%20A.&rft.date=2024-07-10&rft.spage=3124&rft.epage=3129&rft.pages=3124-3129&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC60939.2024.10644419&rft.eisbn=9798350382655&rft_dat=%3Cieee_CHZPO%3E10644419%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106444193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10644419&rfr_iscdi=true |