Loading…

Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction

Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-p...

Full description

Saved in:
Bibliographic Details
Main Authors: Garg, Aryan, Mallampali, Raghav, Joshi, Akshat, Govindarajan, Shrisudhan, Mitra, Kaushik
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Garg, Aryan
Mallampali, Raghav
Joshi, Akshat
Govindarajan, Shrisudhan
Mitra, Kaushik
description Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-precision dark stereo knowledge, implicitly or explicitly, to efficient dual-pixel student networks enables faithful reconstructions. This dark knowledge distillation should also alleviate stereo-synchronization setup and calibration costs while dramatically increasing parameter and inference time efficiency. We collect the first and largest 3-view dual-pixel video dataset, dpMV, to validate our explicit dark knowledge distillation hypothesis. We show that these methods outperform purely monocular solutions, especially in challenging foreground-background separation regions using faithful guidance from dual pixels. Finally, we demonstrate an unconventional use case unlocked by dpMV and implicit dark knowledge distillation from an ensemble of teachers for Light Field (LF) video reconstruction. Our LF video reconstruction method is the fastest and most temporally consistent to date. It remains competitive in reconstruction fidelity while offering many other essential properties like high parameter efficiency, implicit disocclusion handling, zero-shot cross-dataset transfer, geometrically consistent inference on higher spatial-angular resolutions, and adaptive baseline control. All source code is available at the repository https://github.com/Aryan-Garg.
doi_str_mv 10.1109/ICCP61108.2024.10644854
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10644854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644854</ieee_id><sourcerecordid>10644854</sourcerecordid><originalsourceid>FETCH-LOGICAL-i155t-c839a092accf7a6c075c2cbb83b4ebaed60fcd44c68cd937f0d81cf8358e31033</originalsourceid><addsrcrecordid>eNo1UM1KAzEYjIJgqfsGgnmBrfnbbHKUrdVixeJPLx5KNvlSI2lTdlPUt3dFPc3AMMPMIHRByYRSoi_nTbOUA1MTRpiYUCKFUJU4QoWuteIV4ZJWFT1GIyZqVtaSy1NU9P07IYQOkmZ8hF6fMnSQyrtd-ojgNoCnoc8hRpND2mHfpS12-_sVzglPDybiZfiE2GOfOrwIm7eMZwGiw6vgIOFHsGnX5-5gf9xn6MSb2EPxh2P0Mrt-bm7LxcPNvLlalGHol0uruDZEM2Otr420pK4ss22reCugNeAk8dYJYaWyTvPaE6eo9cNCBZwSzsfo_Dc3AMB634Wt6b7W_3_wbwZ8Vgk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction</title><source>IEEE Xplore All Conference Series</source><creator>Garg, Aryan ; Mallampali, Raghav ; Joshi, Akshat ; Govindarajan, Shrisudhan ; Mitra, Kaushik</creator><creatorcontrib>Garg, Aryan ; Mallampali, Raghav ; Joshi, Akshat ; Govindarajan, Shrisudhan ; Mitra, Kaushik</creatorcontrib><description>Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-precision dark stereo knowledge, implicitly or explicitly, to efficient dual-pixel student networks enables faithful reconstructions. This dark knowledge distillation should also alleviate stereo-synchronization setup and calibration costs while dramatically increasing parameter and inference time efficiency. We collect the first and largest 3-view dual-pixel video dataset, dpMV, to validate our explicit dark knowledge distillation hypothesis. We show that these methods outperform purely monocular solutions, especially in challenging foreground-background separation regions using faithful guidance from dual pixels. Finally, we demonstrate an unconventional use case unlocked by dpMV and implicit dark knowledge distillation from an ensemble of teachers for Light Field (LF) video reconstruction. Our LF video reconstruction method is the fastest and most temporally consistent to date. It remains competitive in reconstruction fidelity while offering many other essential properties like high parameter efficiency, implicit disocclusion handling, zero-shot cross-dataset transfer, geometrically consistent inference on higher spatial-angular resolutions, and adaptive baseline control. All source code is available at the repository https://github.com/Aryan-Garg.</description><identifier>EISSN: 2472-7636</identifier><identifier>EISBN: 9798350361551</identifier><identifier>DOI: 10.1109/ICCP61108.2024.10644854</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dataset ; Disparity Estimation ; Dual Pixels ; Knowledge Distillation ; Knowledge engineering ; Light Field ; Light fields ; Photography ; Reconstruction algorithms ; Self-Supervision ; Source coding ; Three-dimensional displays ; Transformers ; Vision Transformers</subject><ispartof>2024 IEEE International Conference on Computational Photography (ICCP), 2024, p.1-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644854$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644854$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garg, Aryan</creatorcontrib><creatorcontrib>Mallampali, Raghav</creatorcontrib><creatorcontrib>Joshi, Akshat</creatorcontrib><creatorcontrib>Govindarajan, Shrisudhan</creatorcontrib><creatorcontrib>Mitra, Kaushik</creatorcontrib><title>Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction</title><title>2024 IEEE International Conference on Computational Photography (ICCP)</title><addtitle>ICCP</addtitle><description>Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-precision dark stereo knowledge, implicitly or explicitly, to efficient dual-pixel student networks enables faithful reconstructions. This dark knowledge distillation should also alleviate stereo-synchronization setup and calibration costs while dramatically increasing parameter and inference time efficiency. We collect the first and largest 3-view dual-pixel video dataset, dpMV, to validate our explicit dark knowledge distillation hypothesis. We show that these methods outperform purely monocular solutions, especially in challenging foreground-background separation regions using faithful guidance from dual pixels. Finally, we demonstrate an unconventional use case unlocked by dpMV and implicit dark knowledge distillation from an ensemble of teachers for Light Field (LF) video reconstruction. Our LF video reconstruction method is the fastest and most temporally consistent to date. It remains competitive in reconstruction fidelity while offering many other essential properties like high parameter efficiency, implicit disocclusion handling, zero-shot cross-dataset transfer, geometrically consistent inference on higher spatial-angular resolutions, and adaptive baseline control. All source code is available at the repository https://github.com/Aryan-Garg.</description><subject>Dataset</subject><subject>Disparity Estimation</subject><subject>Dual Pixels</subject><subject>Knowledge Distillation</subject><subject>Knowledge engineering</subject><subject>Light Field</subject><subject>Light fields</subject><subject>Photography</subject><subject>Reconstruction algorithms</subject><subject>Self-Supervision</subject><subject>Source coding</subject><subject>Three-dimensional displays</subject><subject>Transformers</subject><subject>Vision Transformers</subject><issn>2472-7636</issn><isbn>9798350361551</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1KAzEYjIJgqfsGgnmBrfnbbHKUrdVixeJPLx5KNvlSI2lTdlPUt3dFPc3AMMPMIHRByYRSoi_nTbOUA1MTRpiYUCKFUJU4QoWuteIV4ZJWFT1GIyZqVtaSy1NU9P07IYQOkmZ8hF6fMnSQyrtd-ojgNoCnoc8hRpND2mHfpS12-_sVzglPDybiZfiE2GOfOrwIm7eMZwGiw6vgIOFHsGnX5-5gf9xn6MSb2EPxh2P0Mrt-bm7LxcPNvLlalGHol0uruDZEM2Otr420pK4ss22reCugNeAk8dYJYaWyTvPaE6eo9cNCBZwSzsfo_Dc3AMB634Wt6b7W_3_wbwZ8Vgk</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Garg, Aryan</creator><creator>Mallampali, Raghav</creator><creator>Joshi, Akshat</creator><creator>Govindarajan, Shrisudhan</creator><creator>Mitra, Kaushik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240722</creationdate><title>Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction</title><author>Garg, Aryan ; Mallampali, Raghav ; Joshi, Akshat ; Govindarajan, Shrisudhan ; Mitra, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i155t-c839a092accf7a6c075c2cbb83b4ebaed60fcd44c68cd937f0d81cf8358e31033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dataset</topic><topic>Disparity Estimation</topic><topic>Dual Pixels</topic><topic>Knowledge Distillation</topic><topic>Knowledge engineering</topic><topic>Light Field</topic><topic>Light fields</topic><topic>Photography</topic><topic>Reconstruction algorithms</topic><topic>Self-Supervision</topic><topic>Source coding</topic><topic>Three-dimensional displays</topic><topic>Transformers</topic><topic>Vision Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Garg, Aryan</creatorcontrib><creatorcontrib>Mallampali, Raghav</creatorcontrib><creatorcontrib>Joshi, Akshat</creatorcontrib><creatorcontrib>Govindarajan, Shrisudhan</creatorcontrib><creatorcontrib>Mitra, Kaushik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garg, Aryan</au><au>Mallampali, Raghav</au><au>Joshi, Akshat</au><au>Govindarajan, Shrisudhan</au><au>Mitra, Kaushik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction</atitle><btitle>2024 IEEE International Conference on Computational Photography (ICCP)</btitle><stitle>ICCP</stitle><date>2024-07-22</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><eissn>2472-7636</eissn><eisbn>9798350361551</eisbn><abstract>Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-precision dark stereo knowledge, implicitly or explicitly, to efficient dual-pixel student networks enables faithful reconstructions. This dark knowledge distillation should also alleviate stereo-synchronization setup and calibration costs while dramatically increasing parameter and inference time efficiency. We collect the first and largest 3-view dual-pixel video dataset, dpMV, to validate our explicit dark knowledge distillation hypothesis. We show that these methods outperform purely monocular solutions, especially in challenging foreground-background separation regions using faithful guidance from dual pixels. Finally, we demonstrate an unconventional use case unlocked by dpMV and implicit dark knowledge distillation from an ensemble of teachers for Light Field (LF) video reconstruction. Our LF video reconstruction method is the fastest and most temporally consistent to date. It remains competitive in reconstruction fidelity while offering many other essential properties like high parameter efficiency, implicit disocclusion handling, zero-shot cross-dataset transfer, geometrically consistent inference on higher spatial-angular resolutions, and adaptive baseline control. All source code is available at the repository https://github.com/Aryan-Garg.</abstract><pub>IEEE</pub><doi>10.1109/ICCP61108.2024.10644854</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2472-7636
ispartof 2024 IEEE International Conference on Computational Photography (ICCP), 2024, p.1-12
issn 2472-7636
language eng
recordid cdi_ieee_primary_10644854
source IEEE Xplore All Conference Series
subjects Dataset
Disparity Estimation
Dual Pixels
Knowledge Distillation
Knowledge engineering
Light Field
Light fields
Photography
Reconstruction algorithms
Self-Supervision
Source coding
Three-dimensional displays
Transformers
Vision Transformers
title Stereo-Knowledge Distillation from dpMV to Dual Pixels for Light Field Video Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stereo-Knowledge%20Distillation%20from%20dpMV%20to%20Dual%20Pixels%20for%20Light%20Field%20Video%20Reconstruction&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Computational%20Photography%20(ICCP)&rft.au=Garg,%20Aryan&rft.date=2024-07-22&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.eissn=2472-7636&rft_id=info:doi/10.1109/ICCP61108.2024.10644854&rft.eisbn=9798350361551&rft_dat=%3Cieee_CHZPO%3E10644854%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i155t-c839a092accf7a6c075c2cbb83b4ebaed60fcd44c68cd937f0d81cf8358e31033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10644854&rfr_iscdi=true