Loading…

Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies

This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search en...

Full description

Saved in:
Bibliographic Details
Main Authors: Geremias, Matheus Soppa, Carvalho Da Silveira, Eric, Elibio, Bruno Correa, Nazario Alves, Bruno, De Marco, Lavinia Rafaela, Cerigueli Dutra, Taynara, Maschio, Eleandro, Gasparini, Isabela
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 52
container_issue
container_start_page 50
container_title
container_volume
creator Geremias, Matheus Soppa
Carvalho Da Silveira, Eric
Elibio, Bruno Correa
Nazario Alves, Bruno
De Marco, Lavinia Rafaela
Cerigueli Dutra, Taynara
Maschio, Eleandro
Gasparini, Isabela
description This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.
doi_str_mv 10.1109/ICALT61570.2024.00021
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10645835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10645835</ieee_id><sourcerecordid>10645835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3</originalsourceid><addsrcrecordid>eNotkMFOwzAQRA0SElXpH4DkH2jx2nESc6tKKUhFIFoQt8pJNmVRkpbYOZT_4H9xCqeRRrNvNcPYFYgJgDDXD7Ppch2DTsREChlNhBASTtjIJCZVWqhYCq1O2UBCDGOVJO_nbOTcZ4iJJBLSpAP2s7A18iXatqFmy6eNrQ6ecsep4fOiy62nXfD4LW3JB-3j7oY_t1hRTY1tD_wFXVd5x3clt3x1cB7rcJXzR7vf98zgH7GOHF9j_tHQV4eO26bgb-Q6W9H38Qtf-dZ63BK6C3ZW2srh6F-H7PVuvp7dj5dPi770mEDEfpzmqpSgCwUiTbTJokwgGpOAyXq7KKCMMLc2KyHVaQZFZFIpC41QCmsxU0N2-cclRNzsW6pDoU1gRzoMqH4BcRZrVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><source>IEEE Xplore All Conference Series</source><creator>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</creator><creatorcontrib>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</creatorcontrib><description>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</description><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 9798350362053</identifier><identifier>DOI: 10.1109/ICALT61570.2024.00021</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Data visualization ; Education ; educational digital games ; Game Learning Analytics ; Games ; Search engines ; Stakeholders ; Systematic mapping ; Systematics</subject><ispartof>2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, p.50-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10645835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10645835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geremias, Matheus Soppa</creatorcontrib><creatorcontrib>Carvalho Da Silveira, Eric</creatorcontrib><creatorcontrib>Elibio, Bruno Correa</creatorcontrib><creatorcontrib>Nazario Alves, Bruno</creatorcontrib><creatorcontrib>De Marco, Lavinia Rafaela</creatorcontrib><creatorcontrib>Cerigueli Dutra, Taynara</creatorcontrib><creatorcontrib>Maschio, Eleandro</creatorcontrib><creatorcontrib>Gasparini, Isabela</creatorcontrib><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><title>2024 IEEE International Conference on Advanced Learning Technologies (ICALT)</title><addtitle>ICALT</addtitle><description>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</description><subject>Correlation</subject><subject>Data visualization</subject><subject>Education</subject><subject>educational digital games</subject><subject>Game Learning Analytics</subject><subject>Games</subject><subject>Search engines</subject><subject>Stakeholders</subject><subject>Systematic mapping</subject><subject>Systematics</subject><issn>2161-377X</issn><isbn>9798350362053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRA0SElXpH4DkH2jx2nESc6tKKUhFIFoQt8pJNmVRkpbYOZT_4H9xCqeRRrNvNcPYFYgJgDDXD7Ppch2DTsREChlNhBASTtjIJCZVWqhYCq1O2UBCDGOVJO_nbOTcZ4iJJBLSpAP2s7A18iXatqFmy6eNrQ6ecsep4fOiy62nXfD4LW3JB-3j7oY_t1hRTY1tD_wFXVd5x3clt3x1cB7rcJXzR7vf98zgH7GOHF9j_tHQV4eO26bgb-Q6W9H38Qtf-dZ63BK6C3ZW2srh6F-H7PVuvp7dj5dPi770mEDEfpzmqpSgCwUiTbTJokwgGpOAyXq7KKCMMLc2KyHVaQZFZFIpC41QCmsxU0N2-cclRNzsW6pDoU1gRzoMqH4BcRZrVw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Geremias, Matheus Soppa</creator><creator>Carvalho Da Silveira, Eric</creator><creator>Elibio, Bruno Correa</creator><creator>Nazario Alves, Bruno</creator><creator>De Marco, Lavinia Rafaela</creator><creator>Cerigueli Dutra, Taynara</creator><creator>Maschio, Eleandro</creator><creator>Gasparini, Isabela</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240701</creationdate><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><author>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation</topic><topic>Data visualization</topic><topic>Education</topic><topic>educational digital games</topic><topic>Game Learning Analytics</topic><topic>Games</topic><topic>Search engines</topic><topic>Stakeholders</topic><topic>Systematic mapping</topic><topic>Systematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Geremias, Matheus Soppa</creatorcontrib><creatorcontrib>Carvalho Da Silveira, Eric</creatorcontrib><creatorcontrib>Elibio, Bruno Correa</creatorcontrib><creatorcontrib>Nazario Alves, Bruno</creatorcontrib><creatorcontrib>De Marco, Lavinia Rafaela</creatorcontrib><creatorcontrib>Cerigueli Dutra, Taynara</creatorcontrib><creatorcontrib>Maschio, Eleandro</creatorcontrib><creatorcontrib>Gasparini, Isabela</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geremias, Matheus Soppa</au><au>Carvalho Da Silveira, Eric</au><au>Elibio, Bruno Correa</au><au>Nazario Alves, Bruno</au><au>De Marco, Lavinia Rafaela</au><au>Cerigueli Dutra, Taynara</au><au>Maschio, Eleandro</au><au>Gasparini, Isabela</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</atitle><btitle>2024 IEEE International Conference on Advanced Learning Technologies (ICALT)</btitle><stitle>ICALT</stitle><date>2024-07-01</date><risdate>2024</risdate><spage>50</spage><epage>52</epage><pages>50-52</pages><eissn>2161-377X</eissn><eisbn>9798350362053</eisbn><coden>IEEPAD</coden><abstract>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</abstract><pub>IEEE</pub><doi>10.1109/ICALT61570.2024.00021</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-377X
ispartof 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, p.50-52
issn 2161-377X
language eng
recordid cdi_ieee_primary_10645835
source IEEE Xplore All Conference Series
subjects Correlation
Data visualization
Education
educational digital games
Game Learning Analytics
Games
Search engines
Stakeholders
Systematic mapping
Systematics
title Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Game%20Learning%20Analytics%20in%20Educational%20Digital%20Games:%20Preliminary%20Results%20of%20a%20Systematic%20Mapping%20of%20Analysis%20Techniques%20and%20Visualization%20Strategies&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies%20(ICALT)&rft.au=Geremias,%20Matheus%20Soppa&rft.date=2024-07-01&rft.spage=50&rft.epage=52&rft.pages=50-52&rft.eissn=2161-377X&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICALT61570.2024.00021&rft.eisbn=9798350362053&rft_dat=%3Cieee_CHZPO%3E10645835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10645835&rfr_iscdi=true