Loading…
Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies
This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search en...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 52 |
container_issue | |
container_start_page | 50 |
container_title | |
container_volume | |
creator | Geremias, Matheus Soppa Carvalho Da Silveira, Eric Elibio, Bruno Correa Nazario Alves, Bruno De Marco, Lavinia Rafaela Cerigueli Dutra, Taynara Maschio, Eleandro Gasparini, Isabela |
description | This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies. |
doi_str_mv | 10.1109/ICALT61570.2024.00021 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10645835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10645835</ieee_id><sourcerecordid>10645835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3</originalsourceid><addsrcrecordid>eNotkMFOwzAQRA0SElXpH4DkH2jx2nESc6tKKUhFIFoQt8pJNmVRkpbYOZT_4H9xCqeRRrNvNcPYFYgJgDDXD7Ppch2DTsREChlNhBASTtjIJCZVWqhYCq1O2UBCDGOVJO_nbOTcZ4iJJBLSpAP2s7A18iXatqFmy6eNrQ6ecsep4fOiy62nXfD4LW3JB-3j7oY_t1hRTY1tD_wFXVd5x3clt3x1cB7rcJXzR7vf98zgH7GOHF9j_tHQV4eO26bgb-Q6W9H38Qtf-dZ63BK6C3ZW2srh6F-H7PVuvp7dj5dPi770mEDEfpzmqpSgCwUiTbTJokwgGpOAyXq7KKCMMLc2KyHVaQZFZFIpC41QCmsxU0N2-cclRNzsW6pDoU1gRzoMqH4BcRZrVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><source>IEEE Xplore All Conference Series</source><creator>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</creator><creatorcontrib>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</creatorcontrib><description>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</description><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 9798350362053</identifier><identifier>DOI: 10.1109/ICALT61570.2024.00021</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Data visualization ; Education ; educational digital games ; Game Learning Analytics ; Games ; Search engines ; Stakeholders ; Systematic mapping ; Systematics</subject><ispartof>2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, p.50-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10645835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10645835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geremias, Matheus Soppa</creatorcontrib><creatorcontrib>Carvalho Da Silveira, Eric</creatorcontrib><creatorcontrib>Elibio, Bruno Correa</creatorcontrib><creatorcontrib>Nazario Alves, Bruno</creatorcontrib><creatorcontrib>De Marco, Lavinia Rafaela</creatorcontrib><creatorcontrib>Cerigueli Dutra, Taynara</creatorcontrib><creatorcontrib>Maschio, Eleandro</creatorcontrib><creatorcontrib>Gasparini, Isabela</creatorcontrib><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><title>2024 IEEE International Conference on Advanced Learning Technologies (ICALT)</title><addtitle>ICALT</addtitle><description>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</description><subject>Correlation</subject><subject>Data visualization</subject><subject>Education</subject><subject>educational digital games</subject><subject>Game Learning Analytics</subject><subject>Games</subject><subject>Search engines</subject><subject>Stakeholders</subject><subject>Systematic mapping</subject><subject>Systematics</subject><issn>2161-377X</issn><isbn>9798350362053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRA0SElXpH4DkH2jx2nESc6tKKUhFIFoQt8pJNmVRkpbYOZT_4H9xCqeRRrNvNcPYFYgJgDDXD7Ppch2DTsREChlNhBASTtjIJCZVWqhYCq1O2UBCDGOVJO_nbOTcZ4iJJBLSpAP2s7A18iXatqFmy6eNrQ6ecsep4fOiy62nXfD4LW3JB-3j7oY_t1hRTY1tD_wFXVd5x3clt3x1cB7rcJXzR7vf98zgH7GOHF9j_tHQV4eO26bgb-Q6W9H38Qtf-dZ63BK6C3ZW2srh6F-H7PVuvp7dj5dPi770mEDEfpzmqpSgCwUiTbTJokwgGpOAyXq7KKCMMLc2KyHVaQZFZFIpC41QCmsxU0N2-cclRNzsW6pDoU1gRzoMqH4BcRZrVw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Geremias, Matheus Soppa</creator><creator>Carvalho Da Silveira, Eric</creator><creator>Elibio, Bruno Correa</creator><creator>Nazario Alves, Bruno</creator><creator>De Marco, Lavinia Rafaela</creator><creator>Cerigueli Dutra, Taynara</creator><creator>Maschio, Eleandro</creator><creator>Gasparini, Isabela</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240701</creationdate><title>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</title><author>Geremias, Matheus Soppa ; Carvalho Da Silveira, Eric ; Elibio, Bruno Correa ; Nazario Alves, Bruno ; De Marco, Lavinia Rafaela ; Cerigueli Dutra, Taynara ; Maschio, Eleandro ; Gasparini, Isabela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation</topic><topic>Data visualization</topic><topic>Education</topic><topic>educational digital games</topic><topic>Game Learning Analytics</topic><topic>Games</topic><topic>Search engines</topic><topic>Stakeholders</topic><topic>Systematic mapping</topic><topic>Systematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Geremias, Matheus Soppa</creatorcontrib><creatorcontrib>Carvalho Da Silveira, Eric</creatorcontrib><creatorcontrib>Elibio, Bruno Correa</creatorcontrib><creatorcontrib>Nazario Alves, Bruno</creatorcontrib><creatorcontrib>De Marco, Lavinia Rafaela</creatorcontrib><creatorcontrib>Cerigueli Dutra, Taynara</creatorcontrib><creatorcontrib>Maschio, Eleandro</creatorcontrib><creatorcontrib>Gasparini, Isabela</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geremias, Matheus Soppa</au><au>Carvalho Da Silveira, Eric</au><au>Elibio, Bruno Correa</au><au>Nazario Alves, Bruno</au><au>De Marco, Lavinia Rafaela</au><au>Cerigueli Dutra, Taynara</au><au>Maschio, Eleandro</au><au>Gasparini, Isabela</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies</atitle><btitle>2024 IEEE International Conference on Advanced Learning Technologies (ICALT)</btitle><stitle>ICALT</stitle><date>2024-07-01</date><risdate>2024</risdate><spage>50</spage><epage>52</epage><pages>50-52</pages><eissn>2161-377X</eissn><eisbn>9798350362053</eisbn><coden>IEEPAD</coden><abstract>This paper presents the preliminary results of a systematic mapping fulfilled to identify how Game Learning Analytics (GLA) is being applied in education digital games, verifying which are the most utilized analyses and how their results are visualized. From the 348 studies returned by the search engines, only 76 of them met the defined selection criteria. We concluded that descriptive analysis is the most utilized form of GLA, followed by correlation and clusterization. Besides, line charts, bar charts, and boxplots are the visualization types that are most present in the studies.</abstract><pub>IEEE</pub><doi>10.1109/ICALT61570.2024.00021</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-377X |
ispartof | 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, p.50-52 |
issn | 2161-377X |
language | eng |
recordid | cdi_ieee_primary_10645835 |
source | IEEE Xplore All Conference Series |
subjects | Correlation Data visualization Education educational digital games Game Learning Analytics Games Search engines Stakeholders Systematic mapping Systematics |
title | Game Learning Analytics in Educational Digital Games: Preliminary Results of a Systematic Mapping of Analysis Techniques and Visualization Strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Game%20Learning%20Analytics%20in%20Educational%20Digital%20Games:%20Preliminary%20Results%20of%20a%20Systematic%20Mapping%20of%20Analysis%20Techniques%20and%20Visualization%20Strategies&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies%20(ICALT)&rft.au=Geremias,%20Matheus%20Soppa&rft.date=2024-07-01&rft.spage=50&rft.epage=52&rft.pages=50-52&rft.eissn=2161-377X&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICALT61570.2024.00021&rft.eisbn=9798350362053&rft_dat=%3Cieee_CHZPO%3E10645835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-8c3f215d3108759b4b0ee99719b215ddd1f4ecaabf1858b1d49822d5e1f0aaeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10645835&rfr_iscdi=true |