Loading…

Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals

This study focuses on exploring the use of SAM (Segment Anything Model), an advanced visual foundation model, to enhance the detection of optoelectronic imaging signals. We fine-tuned the mask encoder of SAM and used the Electron Microscopy Dataset as the experimental dataset. To evaluate the effect...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang, Dunyou, Chang, Xin, Peng, Feng, Wu, Bing, Cui, Xiaojun, Zuo, Xin, Ma, JianChao, Zhang, Guoyu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Liang, Dunyou
Chang, Xin
Peng, Feng
Wu, Bing
Cui, Xiaojun
Zuo, Xin
Ma, JianChao
Zhang, Guoyu
description This study focuses on exploring the use of SAM (Segment Anything Model), an advanced visual foundation model, to enhance the detection of optoelectronic imaging signals. We fine-tuned the mask encoder of SAM and used the Electron Microscopy Dataset as the experimental dataset. To evaluate the effect, the U-net model was also used as a comparison benchmark. The experimental results show that the IoU metrics of SAM outperform those of U-net when only a small amount of data is available, demonstrating that the fine-tuned SAM has a unique advantage in recognizing photoelectric imaging signals.
doi_str_mv 10.1109/ICOCN63276.2024.10647230
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10647230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10647230</ieee_id><sourcerecordid>10647230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i91t-43b65259b2586e8971b884c170b1dfa586555de7764c476f49192fe2080c36f13</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQhVdBsNS-gRf7Aqmz_9nLEqstVCtYvC2bZJKupJuSXQTf3rTq1eHM4ZsZDiGUwZwxsA_rYlu8asGNnnPgcs5AS8MFXJGZNTYXCoQ2WvFrMuHGsEyAsrdkFuMnAAgOkgkzIXHlhoAx-tDSdED61icMybuO9g1d1F8uVFjTjRtapB8--j7Ql77GLtLU02U4nPML-IgJq3TOR3B7Sj12ox_64Cu6Prr2fODdt8F18Y7cNKPg7E-nZPe03BWrbLN9XheLTeYtS5kU5fi9siVXucbcGlbmuayYgZLVjRuHSqkajdGykkY30jLLG-SQQyV0w8SU3P-u9Yi4Pw3-6Ibv_X9N4gcBl1y4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals</title><source>IEEE Xplore All Conference Series</source><creator>Liang, Dunyou ; Chang, Xin ; Peng, Feng ; Wu, Bing ; Cui, Xiaojun ; Zuo, Xin ; Ma, JianChao ; Zhang, Guoyu</creator><creatorcontrib>Liang, Dunyou ; Chang, Xin ; Peng, Feng ; Wu, Bing ; Cui, Xiaojun ; Zuo, Xin ; Ma, JianChao ; Zhang, Guoyu</creatorcontrib><description>This study focuses on exploring the use of SAM (Segment Anything Model), an advanced visual foundation model, to enhance the detection of optoelectronic imaging signals. We fine-tuned the mask encoder of SAM and used the Electron Microscopy Dataset as the experimental dataset. To evaluate the effect, the U-net model was also used as a comparison benchmark. The experimental results show that the IoU metrics of SAM outperform those of U-net when only a small amount of data is available, demonstrating that the fine-tuned SAM has a unique advantage in recognizing photoelectric imaging signals.</description><identifier>EISSN: 2771-3059</identifier><identifier>EISBN: 9798350367652</identifier><identifier>DOI: 10.1109/ICOCN63276.2024.10647230</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Data models ; Deep learning ; Image segmentation ; Large Vision Models ; Measurement ; Optical fiber communication ; Optoelectronic imaging ; Training data ; Visualization</subject><ispartof>2024 22nd International Conference on Optical Communications and Networks (ICOCN), 2024, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10647230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10647230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Dunyou</creatorcontrib><creatorcontrib>Chang, Xin</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Cui, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Xin</creatorcontrib><creatorcontrib>Ma, JianChao</creatorcontrib><creatorcontrib>Zhang, Guoyu</creatorcontrib><title>Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals</title><title>2024 22nd International Conference on Optical Communications and Networks (ICOCN)</title><addtitle>ICOCN</addtitle><description>This study focuses on exploring the use of SAM (Segment Anything Model), an advanced visual foundation model, to enhance the detection of optoelectronic imaging signals. We fine-tuned the mask encoder of SAM and used the Electron Microscopy Dataset as the experimental dataset. To evaluate the effect, the U-net model was also used as a comparison benchmark. The experimental results show that the IoU metrics of SAM outperform those of U-net when only a small amount of data is available, demonstrating that the fine-tuned SAM has a unique advantage in recognizing photoelectric imaging signals.</description><subject>Analytical models</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Image segmentation</subject><subject>Large Vision Models</subject><subject>Measurement</subject><subject>Optical fiber communication</subject><subject>Optoelectronic imaging</subject><subject>Training data</subject><subject>Visualization</subject><issn>2771-3059</issn><isbn>9798350367652</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AQhVdBsNS-gRf7Aqmz_9nLEqstVCtYvC2bZJKupJuSXQTf3rTq1eHM4ZsZDiGUwZwxsA_rYlu8asGNnnPgcs5AS8MFXJGZNTYXCoQ2WvFrMuHGsEyAsrdkFuMnAAgOkgkzIXHlhoAx-tDSdED61icMybuO9g1d1F8uVFjTjRtapB8--j7Ql77GLtLU02U4nPML-IgJq3TOR3B7Sj12ox_64Cu6Prr2fODdt8F18Y7cNKPg7E-nZPe03BWrbLN9XheLTeYtS5kU5fi9siVXucbcGlbmuayYgZLVjRuHSqkajdGykkY30jLLG-SQQyV0w8SU3P-u9Yi4Pw3-6Ibv_X9N4gcBl1y4</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Liang, Dunyou</creator><creator>Chang, Xin</creator><creator>Peng, Feng</creator><creator>Wu, Bing</creator><creator>Cui, Xiaojun</creator><creator>Zuo, Xin</creator><creator>Ma, JianChao</creator><creator>Zhang, Guoyu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240726</creationdate><title>Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals</title><author>Liang, Dunyou ; Chang, Xin ; Peng, Feng ; Wu, Bing ; Cui, Xiaojun ; Zuo, Xin ; Ma, JianChao ; Zhang, Guoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i91t-43b65259b2586e8971b884c170b1dfa586555de7764c476f49192fe2080c36f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Image segmentation</topic><topic>Large Vision Models</topic><topic>Measurement</topic><topic>Optical fiber communication</topic><topic>Optoelectronic imaging</topic><topic>Training data</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Dunyou</creatorcontrib><creatorcontrib>Chang, Xin</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Cui, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Xin</creatorcontrib><creatorcontrib>Ma, JianChao</creatorcontrib><creatorcontrib>Zhang, Guoyu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Dunyou</au><au>Chang, Xin</au><au>Peng, Feng</au><au>Wu, Bing</au><au>Cui, Xiaojun</au><au>Zuo, Xin</au><au>Ma, JianChao</au><au>Zhang, Guoyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals</atitle><btitle>2024 22nd International Conference on Optical Communications and Networks (ICOCN)</btitle><stitle>ICOCN</stitle><date>2024-07-26</date><risdate>2024</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2771-3059</eissn><eisbn>9798350367652</eisbn><abstract>This study focuses on exploring the use of SAM (Segment Anything Model), an advanced visual foundation model, to enhance the detection of optoelectronic imaging signals. We fine-tuned the mask encoder of SAM and used the Electron Microscopy Dataset as the experimental dataset. To evaluate the effect, the U-net model was also used as a comparison benchmark. The experimental results show that the IoU metrics of SAM outperform those of U-net when only a small amount of data is available, demonstrating that the fine-tuned SAM has a unique advantage in recognizing photoelectric imaging signals.</abstract><pub>IEEE</pub><doi>10.1109/ICOCN63276.2024.10647230</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-3059
ispartof 2024 22nd International Conference on Optical Communications and Networks (ICOCN), 2024, p.1-3
issn 2771-3059
language eng
recordid cdi_ieee_primary_10647230
source IEEE Xplore All Conference Series
subjects Analytical models
Data models
Deep learning
Image segmentation
Large Vision Models
Measurement
Optical fiber communication
Optoelectronic imaging
Training data
Visualization
title Harnessing the Potential of Advanced Large Vision Models to Enhance the Detection of Optoelectronic Imaging Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Harnessing%20the%20Potential%20of%20Advanced%20Large%20Vision%20Models%20to%20Enhance%20the%20Detection%20of%20Optoelectronic%20Imaging%20Signals&rft.btitle=2024%2022nd%20International%20Conference%20on%20Optical%20Communications%20and%20Networks%20(ICOCN)&rft.au=Liang,%20Dunyou&rft.date=2024-07-26&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2771-3059&rft_id=info:doi/10.1109/ICOCN63276.2024.10647230&rft.eisbn=9798350367652&rft_dat=%3Cieee_CHZPO%3E10647230%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i91t-43b65259b2586e8971b884c170b1dfa586555de7764c476f49192fe2080c36f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10647230&rfr_iscdi=true