Loading…

Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing

In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting dro...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiao, Zhongzheng, Pham, Xuan Huy, Ramasamy, Savitha, Jiang, Xudong, Kayacan, Erdal, Sarabakha, Andriy
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Qiao, Zhongzheng
Pham, Xuan Huy
Ramasamy, Savitha
Jiang, Xudong
Kayacan, Erdal
Sarabakha, Andriy
description In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.
doi_str_mv 10.1109/IJCNN60899.2024.10649903
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10649903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10649903</ieee_id><sourcerecordid>10649903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i713-b1e95fdfda090654c2fc9260b6f50495dbd269bbd659d875317cb0435149e0483</originalsourceid><addsrcrecordid>eNo1kL1OwzAURg0SEqX0DRj8AinXv8kdqxTaoqhIVWcqO3aKUWujxBn69oCA6RuOzhk-QiiDOWOAj5uXervVUCHOOXA5Z6AlIogrMsMSK6FAKBSMX5MJZ5oVUkJ5S-6G4QOAC0QxIW91ijnE0Zxo400fQzzSLvV0l-w4ZLoy2dOlz77NIUU6Rud7urxEcw4tbcLxPf8IIdLFmFNM5zQOdNmn6OnOtN_ontx05jT42d9Oyf75aV-vi-Z1takXTRFKJgrLPKrOdc4Aglay5V2LXIPVnQKJylnHNVrrtEJXlUqwsrUghWISPchKTMnDbzZ47w-ffTib_nL4v0N8AUn-VUI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing</title><source>IEEE Xplore All Conference Series</source><creator>Qiao, Zhongzheng ; Pham, Xuan Huy ; Ramasamy, Savitha ; Jiang, Xudong ; Kayacan, Erdal ; Sarabakha, Andriy</creator><creatorcontrib>Qiao, Zhongzheng ; Pham, Xuan Huy ; Ramasamy, Savitha ; Jiang, Xudong ; Kayacan, Erdal ; Sarabakha, Andriy</creatorcontrib><description>In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9798350359312</identifier><identifier>DOI: 10.1109/IJCNN60899.2024.10649903</identifier><language>eng</language><publisher>IEEE</publisher><subject>aerial robotics ; continual learning ; Continuing education ; Lighting ; Logic gates ; machine perception ; Neural networks ; Real-time systems ; Robot kinematics ; Robustness</subject><ispartof>2024 International Joint Conference on Neural Networks (IJCNN), 2024, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10649903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10649903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Zhongzheng</creatorcontrib><creatorcontrib>Pham, Xuan Huy</creatorcontrib><creatorcontrib>Ramasamy, Savitha</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Kayacan, Erdal</creatorcontrib><creatorcontrib>Sarabakha, Andriy</creatorcontrib><title>Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing</title><title>2024 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.</description><subject>aerial robotics</subject><subject>continual learning</subject><subject>Continuing education</subject><subject>Lighting</subject><subject>Logic gates</subject><subject>machine perception</subject><subject>Neural networks</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robustness</subject><issn>2161-4407</issn><isbn>9798350359312</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kL1OwzAURg0SEqX0DRj8AinXv8kdqxTaoqhIVWcqO3aKUWujxBn69oCA6RuOzhk-QiiDOWOAj5uXervVUCHOOXA5Z6AlIogrMsMSK6FAKBSMX5MJZ5oVUkJ5S-6G4QOAC0QxIW91ijnE0Zxo400fQzzSLvV0l-w4ZLoy2dOlz77NIUU6Rud7urxEcw4tbcLxPf8IIdLFmFNM5zQOdNmn6OnOtN_ontx05jT42d9Oyf75aV-vi-Z1takXTRFKJgrLPKrOdc4Aglay5V2LXIPVnQKJylnHNVrrtEJXlUqwsrUghWISPchKTMnDbzZ47w-ffTib_nL4v0N8AUn-VUI</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Qiao, Zhongzheng</creator><creator>Pham, Xuan Huy</creator><creator>Ramasamy, Savitha</creator><creator>Jiang, Xudong</creator><creator>Kayacan, Erdal</creator><creator>Sarabakha, Andriy</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240630</creationdate><title>Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing</title><author>Qiao, Zhongzheng ; Pham, Xuan Huy ; Ramasamy, Savitha ; Jiang, Xudong ; Kayacan, Erdal ; Sarabakha, Andriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i713-b1e95fdfda090654c2fc9260b6f50495dbd269bbd659d875317cb0435149e0483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerial robotics</topic><topic>continual learning</topic><topic>Continuing education</topic><topic>Lighting</topic><topic>Logic gates</topic><topic>machine perception</topic><topic>Neural networks</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Zhongzheng</creatorcontrib><creatorcontrib>Pham, Xuan Huy</creatorcontrib><creatorcontrib>Ramasamy, Savitha</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Kayacan, Erdal</creatorcontrib><creatorcontrib>Sarabakha, Andriy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Zhongzheng</au><au>Pham, Xuan Huy</au><au>Ramasamy, Savitha</au><au>Jiang, Xudong</au><au>Kayacan, Erdal</au><au>Sarabakha, Andriy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing</atitle><btitle>2024 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2024-06-30</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>9798350359312</eisbn><abstract>In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN60899.2024.10649903</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2024 International Joint Conference on Neural Networks (IJCNN), 2024, p.1-8
issn 2161-4407
language eng
recordid cdi_ieee_primary_10649903
source IEEE Xplore All Conference Series
subjects aerial robotics
continual learning
Continuing education
Lighting
Logic gates
machine perception
Neural networks
Real-time systems
Robot kinematics
Robustness
title Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continual%20Learning%20for%20Robust%20Gate%20Detection%20under%20Dynamic%20Lighting%20in%20Autonomous%20Drone%20Racing&rft.btitle=2024%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Qiao,%20Zhongzheng&rft.date=2024-06-30&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN60899.2024.10649903&rft.eisbn=9798350359312&rft_dat=%3Cieee_CHZPO%3E10649903%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i713-b1e95fdfda090654c2fc9260b6f50495dbd269bbd659d875317cb0435149e0483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10649903&rfr_iscdi=true