Loading…

UnrealFall: Overcoming Data Scarcity through Generative Models

Humans perform a variety of actions, some of which are infrequent but crucial for data collection. Synthetic generation techniques are highly effective in these situations, enhancing the data for such rare actions. In response to this need, we present UnrealFall, a robust framework developed within...

Full description

Saved in:
Bibliographic Details
Main Authors: Mulero-Perez, David, Benavent-Lledo, Manuel, Ortiz-Perez, David, Garcia-Rodriguez, Jose
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Mulero-Perez, David
Benavent-Lledo, Manuel
Ortiz-Perez, David
Garcia-Rodriguez, Jose
description Humans perform a variety of actions, some of which are infrequent but crucial for data collection. Synthetic generation techniques are highly effective in these situations, enhancing the data for such rare actions. In response to this need, we present UnrealFall, a robust framework developed within Unreal Engine 5, designed for the generation of human action video data in hyper-realistic virtual scenes. It addresses the scarcity and limited diversity in existing datasets for actions like falls by leveraging synthetic motion generation through text-guided generative models, Gaussian Splatting technology, and MetaHumans. The usefulness of the framework is demonstrated by its capability to produce a synthetic video dataset featuring elderly individuals falling in various settings. The value of the dataset is demonstrated by its successful use in training a VideoMAE model, in conjunction with the UCF101 and various fall-specific datasets. This versatility in generating data across a spectrum of actions and environments positions our framework as a valuable tool for broader applications such as digital twin creation and dataset augmentation. The code and data are available for research at project website, darkviid.github.io/UnrealFall/.
doi_str_mv 10.1109/IJCNN60899.2024.10651116
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10651116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10651116</ieee_id><sourcerecordid>10651116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i91t-663ef0bde84d0685468db670077cf524c4f50faad02a214874a0f29045f3d3103</originalsourceid><addsrcrecordid>eNo1z81OAjEUQOFqYiIib-CiLzDjvf2vCxMzCmIQFuKalGkLNcOM6YwkvD0LdXV2X3IIoQglItj7-Vu1XCow1pYMmCgRlEREdUEmVlvDJXBpObJLMmKosBAC9DW56fsvAMat5SPy-Nnm4Jqpa5oHujqGXHeH1O7osxsc_ahdrtNwosM-dz-7PZ2FNmQ3pGOg750PTX9LrqJr-jD565ispy_r6rVYrGbz6mlRJItDoRQPEbY-GOFBGSmU8VulAbSuo2SiFlFCdM4DcwyF0cJBZBaEjNxzBD4md79sCiFsvnM6uHza_O_yM5jzSW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>UnrealFall: Overcoming Data Scarcity through Generative Models</title><source>IEEE Xplore All Conference Series</source><creator>Mulero-Perez, David ; Benavent-Lledo, Manuel ; Ortiz-Perez, David ; Garcia-Rodriguez, Jose</creator><creatorcontrib>Mulero-Perez, David ; Benavent-Lledo, Manuel ; Ortiz-Perez, David ; Garcia-Rodriguez, Jose</creatorcontrib><description>Humans perform a variety of actions, some of which are infrequent but crucial for data collection. Synthetic generation techniques are highly effective in these situations, enhancing the data for such rare actions. In response to this need, we present UnrealFall, a robust framework developed within Unreal Engine 5, designed for the generation of human action video data in hyper-realistic virtual scenes. It addresses the scarcity and limited diversity in existing datasets for actions like falls by leveraging synthetic motion generation through text-guided generative models, Gaussian Splatting technology, and MetaHumans. The usefulness of the framework is demonstrated by its capability to produce a synthetic video dataset featuring elderly individuals falling in various settings. The value of the dataset is demonstrated by its successful use in training a VideoMAE model, in conjunction with the UCF101 and various fall-specific datasets. This versatility in generating data across a spectrum of actions and environments positions our framework as a valuable tool for broader applications such as digital twin creation and dataset augmentation. The code and data are available for research at project website, darkviid.github.io/UnrealFall/.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9798350359312</identifier><identifier>DOI: 10.1109/IJCNN60899.2024.10651116</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D scenes reconstruction ; Action video dataset ; Analytical models ; Data models ; Digital twins ; Fall detection ; Neural networks ; Synthetic data generation ; Three-dimensional displays ; Training ; Video sequences</subject><ispartof>2024 International Joint Conference on Neural Networks (IJCNN), 2024, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10651116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10651116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mulero-Perez, David</creatorcontrib><creatorcontrib>Benavent-Lledo, Manuel</creatorcontrib><creatorcontrib>Ortiz-Perez, David</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Jose</creatorcontrib><title>UnrealFall: Overcoming Data Scarcity through Generative Models</title><title>2024 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Humans perform a variety of actions, some of which are infrequent but crucial for data collection. Synthetic generation techniques are highly effective in these situations, enhancing the data for such rare actions. In response to this need, we present UnrealFall, a robust framework developed within Unreal Engine 5, designed for the generation of human action video data in hyper-realistic virtual scenes. It addresses the scarcity and limited diversity in existing datasets for actions like falls by leveraging synthetic motion generation through text-guided generative models, Gaussian Splatting technology, and MetaHumans. The usefulness of the framework is demonstrated by its capability to produce a synthetic video dataset featuring elderly individuals falling in various settings. The value of the dataset is demonstrated by its successful use in training a VideoMAE model, in conjunction with the UCF101 and various fall-specific datasets. This versatility in generating data across a spectrum of actions and environments positions our framework as a valuable tool for broader applications such as digital twin creation and dataset augmentation. The code and data are available for research at project website, darkviid.github.io/UnrealFall/.</description><subject>3D scenes reconstruction</subject><subject>Action video dataset</subject><subject>Analytical models</subject><subject>Data models</subject><subject>Digital twins</subject><subject>Fall detection</subject><subject>Neural networks</subject><subject>Synthetic data generation</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Video sequences</subject><issn>2161-4407</issn><isbn>9798350359312</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1z81OAjEUQOFqYiIib-CiLzDjvf2vCxMzCmIQFuKalGkLNcOM6YwkvD0LdXV2X3IIoQglItj7-Vu1XCow1pYMmCgRlEREdUEmVlvDJXBpObJLMmKosBAC9DW56fsvAMat5SPy-Nnm4Jqpa5oHujqGXHeH1O7osxsc_ahdrtNwosM-dz-7PZ2FNmQ3pGOg750PTX9LrqJr-jD565ispy_r6rVYrGbz6mlRJItDoRQPEbY-GOFBGSmU8VulAbSuo2SiFlFCdM4DcwyF0cJBZBaEjNxzBD4md79sCiFsvnM6uHza_O_yM5jzSW8</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Mulero-Perez, David</creator><creator>Benavent-Lledo, Manuel</creator><creator>Ortiz-Perez, David</creator><creator>Garcia-Rodriguez, Jose</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240630</creationdate><title>UnrealFall: Overcoming Data Scarcity through Generative Models</title><author>Mulero-Perez, David ; Benavent-Lledo, Manuel ; Ortiz-Perez, David ; Garcia-Rodriguez, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i91t-663ef0bde84d0685468db670077cf524c4f50faad02a214874a0f29045f3d3103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D scenes reconstruction</topic><topic>Action video dataset</topic><topic>Analytical models</topic><topic>Data models</topic><topic>Digital twins</topic><topic>Fall detection</topic><topic>Neural networks</topic><topic>Synthetic data generation</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Mulero-Perez, David</creatorcontrib><creatorcontrib>Benavent-Lledo, Manuel</creatorcontrib><creatorcontrib>Ortiz-Perez, David</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Jose</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mulero-Perez, David</au><au>Benavent-Lledo, Manuel</au><au>Ortiz-Perez, David</au><au>Garcia-Rodriguez, Jose</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>UnrealFall: Overcoming Data Scarcity through Generative Models</atitle><btitle>2024 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2024-06-30</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>9798350359312</eisbn><abstract>Humans perform a variety of actions, some of which are infrequent but crucial for data collection. Synthetic generation techniques are highly effective in these situations, enhancing the data for such rare actions. In response to this need, we present UnrealFall, a robust framework developed within Unreal Engine 5, designed for the generation of human action video data in hyper-realistic virtual scenes. It addresses the scarcity and limited diversity in existing datasets for actions like falls by leveraging synthetic motion generation through text-guided generative models, Gaussian Splatting technology, and MetaHumans. The usefulness of the framework is demonstrated by its capability to produce a synthetic video dataset featuring elderly individuals falling in various settings. The value of the dataset is demonstrated by its successful use in training a VideoMAE model, in conjunction with the UCF101 and various fall-specific datasets. This versatility in generating data across a spectrum of actions and environments positions our framework as a valuable tool for broader applications such as digital twin creation and dataset augmentation. The code and data are available for research at project website, darkviid.github.io/UnrealFall/.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN60899.2024.10651116</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2024 International Joint Conference on Neural Networks (IJCNN), 2024, p.1-8
issn 2161-4407
language eng
recordid cdi_ieee_primary_10651116
source IEEE Xplore All Conference Series
subjects 3D scenes reconstruction
Action video dataset
Analytical models
Data models
Digital twins
Fall detection
Neural networks
Synthetic data generation
Three-dimensional displays
Training
Video sequences
title UnrealFall: Overcoming Data Scarcity through Generative Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=UnrealFall:%20Overcoming%20Data%20Scarcity%20through%20Generative%20Models&rft.btitle=2024%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Mulero-Perez,%20David&rft.date=2024-06-30&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN60899.2024.10651116&rft.eisbn=9798350359312&rft_dat=%3Cieee_CHZPO%3E10651116%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i91t-663ef0bde84d0685468db670077cf524c4f50faad02a214874a0f29045f3d3103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10651116&rfr_iscdi=true