Loading…

Power Allocation Game Between Multiple Statistical MIMO Radar Networks and Multiple Jammers Based on Mutual Information

This article investigates the power allocation problem between multiple statistical multiple-input multiple-output(MIMO) radar networks and multiple jammers. Specifically, the main objective of multiple statistical MIMO radar networks is to maximize the mutual information(MI) between the received si...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2024-11, Vol.73 (11), p.17657-17667
Main Authors: Zhang, Gangsheng, Xie, Junwei, Zhang, Haowei, Liu, Xiangyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article investigates the power allocation problem between multiple statistical multiple-input multiple-output(MIMO) radar networks and multiple jammers. Specifically, the main objective of multiple statistical MIMO radar networks is to maximize the mutual information(MI) between the received signal and the path gain matrix under power constraints, whereas the jammers aim to minimize the MI. Based on the theory of Stackelberg game, multiple statistical MIMO radar networks and the jammers are taken as the leader, respectively, and the power allocation problem between the opposing players is effectively solved by using the Lagrange multiplier method. In addition, we derive the existence and uniqueness of the Stackelberg equilibria. Finally, we provide simulation results and compare the performance with other algorithms.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2024.3429618