Loading…
Towards Text-guided 3D Scene Composition
We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challe...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6838 |
container_issue | |
container_start_page | 6829 |
container_title | |
container_volume | |
creator | Zhang, Qihang Wang, Chaoyang Siarohin, Aliaksandr Zhuang, Peiye Xu, Yinghao Yang, Ceyuan Lin, Dahua Zhou, Bolei Tulyakov, Sergey Lee, Hsin-Ying |
description | We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/. |
doi_str_mv | 10.1109/CVPR52733.2024.00652 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10654954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654954</ieee_id><sourcerecordid>10654954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3</originalsourceid><addsrcrecordid>eNotjMtKxDAUQKMgOIz9g1l06ab1PnKTZin1CQOKVrdD2mQk4kyHtqL-vQWFAwfO4ii1QigRwV3Ur49PQpa5JCBdAhihI5U56yoWYOG5HKsFiZXCgpVTlY3jOwAwIRpXLdR503_5IYx5E7-n4u0zhRhyvsqfu7iPed3vDv2YptTvz9TJ1n-MMfv3Ur3cXDf1XbF-uL2vL9dFQjBTEQzNAHNLFGaL9qwDOSuWNWFlO5aInRfxRiRoqDBI1C26rTUBW16q1d83xRg3hyHt_PCzmd-inWj-BeHvQDw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards Text-guided 3D Scene Composition</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</creator><creatorcontrib>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</creatorcontrib><description>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9798350353006</identifier><identifier>DOI: 10.1109/CVPR52733.2024.00652</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D generation ; Geometry ; Hybrid power systems ; Layout ; Pipelines ; Scene generation ; Solid modeling ; Text to image ; Three-dimensional displays</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.6829-6838</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10654954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Xu, Yinghao</creatorcontrib><creatorcontrib>Yang, Ceyuan</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Zhou, Bolei</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><title>Towards Text-guided 3D Scene Composition</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</description><subject>3D generation</subject><subject>Geometry</subject><subject>Hybrid power systems</subject><subject>Layout</subject><subject>Pipelines</subject><subject>Scene generation</subject><subject>Solid modeling</subject><subject>Text to image</subject><subject>Three-dimensional displays</subject><issn>2575-7075</issn><isbn>9798350353006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKxDAUQKMgOIz9g1l06ab1PnKTZin1CQOKVrdD2mQk4kyHtqL-vQWFAwfO4ii1QigRwV3Ur49PQpa5JCBdAhihI5U56yoWYOG5HKsFiZXCgpVTlY3jOwAwIRpXLdR503_5IYx5E7-n4u0zhRhyvsqfu7iPed3vDv2YptTvz9TJ1n-MMfv3Ur3cXDf1XbF-uL2vL9dFQjBTEQzNAHNLFGaL9qwDOSuWNWFlO5aInRfxRiRoqDBI1C26rTUBW16q1d83xRg3hyHt_PCzmd-inWj-BeHvQDw</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Zhang, Qihang</creator><creator>Wang, Chaoyang</creator><creator>Siarohin, Aliaksandr</creator><creator>Zhuang, Peiye</creator><creator>Xu, Yinghao</creator><creator>Yang, Ceyuan</creator><creator>Lin, Dahua</creator><creator>Zhou, Bolei</creator><creator>Tulyakov, Sergey</creator><creator>Lee, Hsin-Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240616</creationdate><title>Towards Text-guided 3D Scene Composition</title><author>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D generation</topic><topic>Geometry</topic><topic>Hybrid power systems</topic><topic>Layout</topic><topic>Pipelines</topic><topic>Scene generation</topic><topic>Solid modeling</topic><topic>Text to image</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Xu, Yinghao</creatorcontrib><creatorcontrib>Yang, Ceyuan</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Zhou, Bolei</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qihang</au><au>Wang, Chaoyang</au><au>Siarohin, Aliaksandr</au><au>Zhuang, Peiye</au><au>Xu, Yinghao</au><au>Yang, Ceyuan</au><au>Lin, Dahua</au><au>Zhou, Bolei</au><au>Tulyakov, Sergey</au><au>Lee, Hsin-Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards Text-guided 3D Scene Composition</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2024-06-16</date><risdate>2024</risdate><spage>6829</spage><epage>6838</epage><pages>6829-6838</pages><eissn>2575-7075</eissn><eisbn>9798350353006</eisbn><coden>IEEPAD</coden><abstract>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</abstract><pub>IEEE</pub><doi>10.1109/CVPR52733.2024.00652</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7075 |
ispartof | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.6829-6838 |
issn | 2575-7075 |
language | eng |
recordid | cdi_ieee_primary_10654954 |
source | IEEE Xplore All Conference Series |
subjects | 3D generation Geometry Hybrid power systems Layout Pipelines Scene generation Solid modeling Text to image Three-dimensional displays |
title | Towards Text-guided 3D Scene Composition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20Text-guided%203D%20Scene%20Composition&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Zhang,%20Qihang&rft.date=2024-06-16&rft.spage=6829&rft.epage=6838&rft.pages=6829-6838&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR52733.2024.00652&rft.eisbn=9798350353006&rft_dat=%3Cieee_CHZPO%3E10654954%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10654954&rfr_iscdi=true |