Loading…

Towards Text-guided 3D Scene Composition

We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challe...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Qihang, Wang, Chaoyang, Siarohin, Aliaksandr, Zhuang, Peiye, Xu, Yinghao, Yang, Ceyuan, Lin, Dahua, Zhou, Bolei, Tulyakov, Sergey, Lee, Hsin-Ying
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6838
container_issue
container_start_page 6829
container_title
container_volume
creator Zhang, Qihang
Wang, Chaoyang
Siarohin, Aliaksandr
Zhuang, Peiye
Xu, Yinghao
Yang, Ceyuan
Lin, Dahua
Zhou, Bolei
Tulyakov, Sergey
Lee, Hsin-Ying
description We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.
doi_str_mv 10.1109/CVPR52733.2024.00652
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10654954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654954</ieee_id><sourcerecordid>10654954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3</originalsourceid><addsrcrecordid>eNotjMtKxDAUQKMgOIz9g1l06ab1PnKTZin1CQOKVrdD2mQk4kyHtqL-vQWFAwfO4ii1QigRwV3Ur49PQpa5JCBdAhihI5U56yoWYOG5HKsFiZXCgpVTlY3jOwAwIRpXLdR503_5IYx5E7-n4u0zhRhyvsqfu7iPed3vDv2YptTvz9TJ1n-MMfv3Ur3cXDf1XbF-uL2vL9dFQjBTEQzNAHNLFGaL9qwDOSuWNWFlO5aInRfxRiRoqDBI1C26rTUBW16q1d83xRg3hyHt_PCzmd-inWj-BeHvQDw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards Text-guided 3D Scene Composition</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</creator><creatorcontrib>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</creatorcontrib><description>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9798350353006</identifier><identifier>DOI: 10.1109/CVPR52733.2024.00652</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D generation ; Geometry ; Hybrid power systems ; Layout ; Pipelines ; Scene generation ; Solid modeling ; Text to image ; Three-dimensional displays</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.6829-6838</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10654954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Xu, Yinghao</creatorcontrib><creatorcontrib>Yang, Ceyuan</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Zhou, Bolei</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><title>Towards Text-guided 3D Scene Composition</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</description><subject>3D generation</subject><subject>Geometry</subject><subject>Hybrid power systems</subject><subject>Layout</subject><subject>Pipelines</subject><subject>Scene generation</subject><subject>Solid modeling</subject><subject>Text to image</subject><subject>Three-dimensional displays</subject><issn>2575-7075</issn><isbn>9798350353006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKxDAUQKMgOIz9g1l06ab1PnKTZin1CQOKVrdD2mQk4kyHtqL-vQWFAwfO4ii1QigRwV3Ur49PQpa5JCBdAhihI5U56yoWYOG5HKsFiZXCgpVTlY3jOwAwIRpXLdR503_5IYx5E7-n4u0zhRhyvsqfu7iPed3vDv2YptTvz9TJ1n-MMfv3Ur3cXDf1XbF-uL2vL9dFQjBTEQzNAHNLFGaL9qwDOSuWNWFlO5aInRfxRiRoqDBI1C26rTUBW16q1d83xRg3hyHt_PCzmd-inWj-BeHvQDw</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Zhang, Qihang</creator><creator>Wang, Chaoyang</creator><creator>Siarohin, Aliaksandr</creator><creator>Zhuang, Peiye</creator><creator>Xu, Yinghao</creator><creator>Yang, Ceyuan</creator><creator>Lin, Dahua</creator><creator>Zhou, Bolei</creator><creator>Tulyakov, Sergey</creator><creator>Lee, Hsin-Ying</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240616</creationdate><title>Towards Text-guided 3D Scene Composition</title><author>Zhang, Qihang ; Wang, Chaoyang ; Siarohin, Aliaksandr ; Zhuang, Peiye ; Xu, Yinghao ; Yang, Ceyuan ; Lin, Dahua ; Zhou, Bolei ; Tulyakov, Sergey ; Lee, Hsin-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D generation</topic><topic>Geometry</topic><topic>Hybrid power systems</topic><topic>Layout</topic><topic>Pipelines</topic><topic>Scene generation</topic><topic>Solid modeling</topic><topic>Text to image</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Xu, Yinghao</creatorcontrib><creatorcontrib>Yang, Ceyuan</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Zhou, Bolei</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qihang</au><au>Wang, Chaoyang</au><au>Siarohin, Aliaksandr</au><au>Zhuang, Peiye</au><au>Xu, Yinghao</au><au>Yang, Ceyuan</au><au>Lin, Dahua</au><au>Zhou, Bolei</au><au>Tulyakov, Sergey</au><au>Lee, Hsin-Ying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards Text-guided 3D Scene Composition</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2024-06-16</date><risdate>2024</risdate><spage>6829</spage><epage>6838</epage><pages>6829-6838</pages><eissn>2575-7075</eissn><eisbn>9798350353006</eisbn><coden>IEEPAD</coden><abstract>We are witnessing significant breakthroughs in the tech-nology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D - a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation - explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incor-porate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes. Our project website is at https://zqh0253.github.io/SceneWiz3D/.</abstract><pub>IEEE</pub><doi>10.1109/CVPR52733.2024.00652</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-7075
ispartof 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.6829-6838
issn 2575-7075
language eng
recordid cdi_ieee_primary_10654954
source IEEE Xplore All Conference Series
subjects 3D generation
Geometry
Hybrid power systems
Layout
Pipelines
Scene generation
Solid modeling
Text to image
Three-dimensional displays
title Towards Text-guided 3D Scene Composition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20Text-guided%203D%20Scene%20Composition&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Zhang,%20Qihang&rft.date=2024-06-16&rft.spage=6829&rft.epage=6838&rft.pages=6829-6838&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR52733.2024.00652&rft.eisbn=9798350353006&rft_dat=%3Cieee_CHZPO%3E10654954%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i106t-d62d62033b22d20354a34d29757342187c35e1ca55a655d4081d5e4b19f76d1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10654954&rfr_iscdi=true