Loading…
Differentiable Neural Surface Refinement for Modeling Transparent Objects
Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refractio...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 20277 |
container_issue | |
container_start_page | 20268 |
container_title | |
container_volume | |
creator | Deng, Weijian Campbell, Dylan Sun, Chunyi Kanitkar, Shubham Shaffer, Matthew E. Gould, Stephen |
description | Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refraction and reflection. In this study, we introduce trans-parent neural surface refinement (TNSR), a novel surface reconstruction framework that explicitly incorporates phys-ical refraction and reflection tracing. Beginning with an initial, approximate surface, our method employs sphere tracing combined with Snell's law to cast both reflected and refracted rays. Central to our proposal is an innovative differentiable technique devised to allow signals from the pho-tometric evidence to propagate back to the surface model by considering how the surface bends and reflects light rays. This allows us to connect surface refinement with volume rendering, enabling end-to-end optimization solely on multi-view RGB images. In our experiments, TNSR demonstrates significant improvements in novel view synthesis and geometry estimation of transparent objects, without prior knowledge of the refractive index. |
doi_str_mv | 10.1109/CVPR52733.2024.01916 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10657013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10657013</ieee_id><sourcerecordid>10657013</sourcerecordid><originalsourceid>FETCH-ieee_primary_106570133</originalsourceid><addsrcrecordid>eNqFy8sOATEUgOGSSAjzBhZ9AeOcVqe6dgkLlwyxlc44lcoY0rLw9kjsrf7Fl5-xPkKKCGY4OWxzJbSUqQAxSgENZg2WGG3GUoFUEiBrso5QWg00aNVmSYwXAJACMTPjDltOvXMUqH54W1TE1_QMtuK7Z3C2JJ6T8zVdP8zdLfDV7USVr898H2wd7_b78U1xofIRe6zlbBUp-bXL-vPZfrIYeCI63oO_2vA6ImRKA0r5h99NLz_V</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Differentiable Neural Surface Refinement for Modeling Transparent Objects</title><source>IEEE Xplore All Conference Series</source><creator>Deng, Weijian ; Campbell, Dylan ; Sun, Chunyi ; Kanitkar, Shubham ; Shaffer, Matthew E. ; Gould, Stephen</creator><creatorcontrib>Deng, Weijian ; Campbell, Dylan ; Sun, Chunyi ; Kanitkar, Shubham ; Shaffer, Matthew E. ; Gould, Stephen</creatorcontrib><description>Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refraction and reflection. In this study, we introduce trans-parent neural surface refinement (TNSR), a novel surface reconstruction framework that explicitly incorporates phys-ical refraction and reflection tracing. Beginning with an initial, approximate surface, our method employs sphere tracing combined with Snell's law to cast both reflected and refracted rays. Central to our proposal is an innovative differentiable technique devised to allow signals from the pho-tometric evidence to propagate back to the surface model by considering how the surface bends and reflects light rays. This allows us to connect surface refinement with volume rendering, enabling end-to-end optimization solely on multi-view RGB images. In our experiments, TNSR demonstrates significant improvements in novel view synthesis and geometry estimation of transparent objects, without prior knowledge of the refractive index.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9798350353006</identifier><identifier>DOI: 10.1109/CVPR52733.2024.01916</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Reconstruction ; Neural Suface Refinement ; Optical imaging ; Optical refraction ; Optical variables control ; Reflection ; Refractive index ; Rendering (computer graphics) ; Surface reconstruction ; Transparent Objects</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.20268-20277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10657013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10657013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Weijian</creatorcontrib><creatorcontrib>Campbell, Dylan</creatorcontrib><creatorcontrib>Sun, Chunyi</creatorcontrib><creatorcontrib>Kanitkar, Shubham</creatorcontrib><creatorcontrib>Shaffer, Matthew E.</creatorcontrib><creatorcontrib>Gould, Stephen</creatorcontrib><title>Differentiable Neural Surface Refinement for Modeling Transparent Objects</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refraction and reflection. In this study, we introduce trans-parent neural surface refinement (TNSR), a novel surface reconstruction framework that explicitly incorporates phys-ical refraction and reflection tracing. Beginning with an initial, approximate surface, our method employs sphere tracing combined with Snell's law to cast both reflected and refracted rays. Central to our proposal is an innovative differentiable technique devised to allow signals from the pho-tometric evidence to propagate back to the surface model by considering how the surface bends and reflects light rays. This allows us to connect surface refinement with volume rendering, enabling end-to-end optimization solely on multi-view RGB images. In our experiments, TNSR demonstrates significant improvements in novel view synthesis and geometry estimation of transparent objects, without prior knowledge of the refractive index.</description><subject>3D Reconstruction</subject><subject>Neural Suface Refinement</subject><subject>Optical imaging</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Reflection</subject><subject>Refractive index</subject><subject>Rendering (computer graphics)</subject><subject>Surface reconstruction</subject><subject>Transparent Objects</subject><issn>2575-7075</issn><isbn>9798350353006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFy8sOATEUgOGSSAjzBhZ9AeOcVqe6dgkLlwyxlc44lcoY0rLw9kjsrf7Fl5-xPkKKCGY4OWxzJbSUqQAxSgENZg2WGG3GUoFUEiBrso5QWg00aNVmSYwXAJACMTPjDltOvXMUqH54W1TE1_QMtuK7Z3C2JJ6T8zVdP8zdLfDV7USVr898H2wd7_b78U1xofIRe6zlbBUp-bXL-vPZfrIYeCI63oO_2vA6ImRKA0r5h99NLz_V</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Deng, Weijian</creator><creator>Campbell, Dylan</creator><creator>Sun, Chunyi</creator><creator>Kanitkar, Shubham</creator><creator>Shaffer, Matthew E.</creator><creator>Gould, Stephen</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240616</creationdate><title>Differentiable Neural Surface Refinement for Modeling Transparent Objects</title><author>Deng, Weijian ; Campbell, Dylan ; Sun, Chunyi ; Kanitkar, Shubham ; Shaffer, Matthew E. ; Gould, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106570133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D Reconstruction</topic><topic>Neural Suface Refinement</topic><topic>Optical imaging</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Reflection</topic><topic>Refractive index</topic><topic>Rendering (computer graphics)</topic><topic>Surface reconstruction</topic><topic>Transparent Objects</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Weijian</creatorcontrib><creatorcontrib>Campbell, Dylan</creatorcontrib><creatorcontrib>Sun, Chunyi</creatorcontrib><creatorcontrib>Kanitkar, Shubham</creatorcontrib><creatorcontrib>Shaffer, Matthew E.</creatorcontrib><creatorcontrib>Gould, Stephen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Weijian</au><au>Campbell, Dylan</au><au>Sun, Chunyi</au><au>Kanitkar, Shubham</au><au>Shaffer, Matthew E.</au><au>Gould, Stephen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Differentiable Neural Surface Refinement for Modeling Transparent Objects</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2024-06-16</date><risdate>2024</risdate><spage>20268</spage><epage>20277</epage><pages>20268-20277</pages><eissn>2575-7075</eissn><eisbn>9798350353006</eisbn><coden>IEEPAD</coden><abstract>Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refraction and reflection. In this study, we introduce trans-parent neural surface refinement (TNSR), a novel surface reconstruction framework that explicitly incorporates phys-ical refraction and reflection tracing. Beginning with an initial, approximate surface, our method employs sphere tracing combined with Snell's law to cast both reflected and refracted rays. Central to our proposal is an innovative differentiable technique devised to allow signals from the pho-tometric evidence to propagate back to the surface model by considering how the surface bends and reflects light rays. This allows us to connect surface refinement with volume rendering, enabling end-to-end optimization solely on multi-view RGB images. In our experiments, TNSR demonstrates significant improvements in novel view synthesis and geometry estimation of transparent objects, without prior knowledge of the refractive index.</abstract><pub>IEEE</pub><doi>10.1109/CVPR52733.2024.01916</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7075 |
ispartof | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.20268-20277 |
issn | 2575-7075 |
language | eng |
recordid | cdi_ieee_primary_10657013 |
source | IEEE Xplore All Conference Series |
subjects | 3D Reconstruction Neural Suface Refinement Optical imaging Optical refraction Optical variables control Reflection Refractive index Rendering (computer graphics) Surface reconstruction Transparent Objects |
title | Differentiable Neural Surface Refinement for Modeling Transparent Objects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Differentiable%20Neural%20Surface%20Refinement%20for%20Modeling%20Transparent%20Objects&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Deng,%20Weijian&rft.date=2024-06-16&rft.spage=20268&rft.epage=20277&rft.pages=20268-20277&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR52733.2024.01916&rft.eisbn=9798350353006&rft_dat=%3Cieee_CHZPO%3E10657013%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_106570133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10657013&rfr_iscdi=true |