Loading…
Language-driven Grasp Detection
Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many meth-ods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 17912 |
container_issue | |
container_start_page | 17902 |
container_title | |
container_volume | |
creator | Vuong, An Dinh Vu, Minh Nhat Huang, Baoru Nguyen, Nghia Le, Hieu Vo, Thieu Nguyen, Anh |
description | Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many meth-ods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this paper, we introduce Grasp-Anything++, a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping in-structions. We utilize foundation models to create a large-scale scene corpus with corresponding images and grasp prompts. We approach the language-driven grasp detection task as a conditional generation problem. Drawing on the success of diffusion models in generative tasks and given that language plays a vital role in this task, we propose a new language-driven grasp detection method based on dif-fusion models. Our key contribution is the contrastive training objective, which explicitly contributes to the denoising process to detect the grasp pose given the language instructions. We illustrate that our approach is theoretically sup-portive. The intensive experiments show that our method outperforms state-of-the-art approaches and allows real-world robotic grasping. Finally, we demonstrate our large-scale dataset enables zero-short grasp detection and is a challenging benchmark for future work. |
doi_str_mv | 10.1109/CVPR52733.2024.01695 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10657374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10657374</ieee_id><sourcerecordid>10657374</sourcerecordid><originalsourceid>FETCH-LOGICAL-i675-9b11b459e96e4ef760c706168ba15d7580b20e1cc857b2988f7d9ab0374694593</originalsourceid><addsrcrecordid>eNotjMFKw0AQQFdBsNT8QcH-QOLMbmZn5yhRWyGgSPFadpNJiWgsSRX8ewN6epf3njErhAIR5KZ6fX4hy84VFmxZAHqhM5MJS3AEjhyAPzcLS0w5A9OlyabpDQCcxdkNC3Ndx-HwFQ-at2P_rcN6M8bpuL7Tkzan_nO4MhddfJ80--fS7B7ud9U2r582j9Vtnfd-fktCTCWJitdSO_bQMHj0IUWklilAsqDYNIE4WQmh41ZiAsell7lzS7P62_aquj-O_Uccf_YInnh23C9M1j1F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Language-driven Grasp Detection</title><source>IEEE Xplore All Conference Series</source><creator>Vuong, An Dinh ; Vu, Minh Nhat ; Huang, Baoru ; Nguyen, Nghia ; Le, Hieu ; Vo, Thieu ; Nguyen, Anh</creator><creatorcontrib>Vuong, An Dinh ; Vu, Minh Nhat ; Huang, Baoru ; Nguyen, Nghia ; Le, Hieu ; Vo, Thieu ; Nguyen, Anh</creatorcontrib><description>Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many meth-ods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this paper, we introduce Grasp-Anything++, a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping in-structions. We utilize foundation models to create a large-scale scene corpus with corresponding images and grasp prompts. We approach the language-driven grasp detection task as a conditional generation problem. Drawing on the success of diffusion models in generative tasks and given that language plays a vital role in this task, we propose a new language-driven grasp detection method based on dif-fusion models. Our key contribution is the contrastive training objective, which explicitly contributes to the denoising process to detect the grasp pose given the language instructions. We illustrate that our approach is theoretically sup-portive. The intensive experiments show that our method outperforms state-of-the-art approaches and allows real-world robotic grasping. Finally, we demonstrate our large-scale dataset enables zero-short grasp detection and is a challenging benchmark for future work.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9798350353006</identifier><identifier>DOI: 10.1109/CVPR52733.2024.01695</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Computer vision ; contrastive learning ; Diffusion models ; grasp detection ; Grasping ; Natural languages ; Noise reduction ; Training</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.17902-17912</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10657374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10657374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vuong, An Dinh</creatorcontrib><creatorcontrib>Vu, Minh Nhat</creatorcontrib><creatorcontrib>Huang, Baoru</creatorcontrib><creatorcontrib>Nguyen, Nghia</creatorcontrib><creatorcontrib>Le, Hieu</creatorcontrib><creatorcontrib>Vo, Thieu</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><title>Language-driven Grasp Detection</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many meth-ods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this paper, we introduce Grasp-Anything++, a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping in-structions. We utilize foundation models to create a large-scale scene corpus with corresponding images and grasp prompts. We approach the language-driven grasp detection task as a conditional generation problem. Drawing on the success of diffusion models in generative tasks and given that language plays a vital role in this task, we propose a new language-driven grasp detection method based on dif-fusion models. Our key contribution is the contrastive training objective, which explicitly contributes to the denoising process to detect the grasp pose given the language instructions. We illustrate that our approach is theoretically sup-portive. The intensive experiments show that our method outperforms state-of-the-art approaches and allows real-world robotic grasping. Finally, we demonstrate our large-scale dataset enables zero-short grasp detection and is a challenging benchmark for future work.</description><subject>Benchmark testing</subject><subject>Computer vision</subject><subject>contrastive learning</subject><subject>Diffusion models</subject><subject>grasp detection</subject><subject>Grasping</subject><subject>Natural languages</subject><subject>Noise reduction</subject><subject>Training</subject><issn>2575-7075</issn><isbn>9798350353006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMFKw0AQQFdBsNT8QcH-QOLMbmZn5yhRWyGgSPFadpNJiWgsSRX8ewN6epf3njErhAIR5KZ6fX4hy84VFmxZAHqhM5MJS3AEjhyAPzcLS0w5A9OlyabpDQCcxdkNC3Ndx-HwFQ-at2P_rcN6M8bpuL7Tkzan_nO4MhddfJ80--fS7B7ud9U2r582j9Vtnfd-fktCTCWJitdSO_bQMHj0IUWklilAsqDYNIE4WQmh41ZiAsell7lzS7P62_aquj-O_Uccf_YInnh23C9M1j1F</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Vuong, An Dinh</creator><creator>Vu, Minh Nhat</creator><creator>Huang, Baoru</creator><creator>Nguyen, Nghia</creator><creator>Le, Hieu</creator><creator>Vo, Thieu</creator><creator>Nguyen, Anh</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240616</creationdate><title>Language-driven Grasp Detection</title><author>Vuong, An Dinh ; Vu, Minh Nhat ; Huang, Baoru ; Nguyen, Nghia ; Le, Hieu ; Vo, Thieu ; Nguyen, Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i675-9b11b459e96e4ef760c706168ba15d7580b20e1cc857b2988f7d9ab0374694593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmark testing</topic><topic>Computer vision</topic><topic>contrastive learning</topic><topic>Diffusion models</topic><topic>grasp detection</topic><topic>Grasping</topic><topic>Natural languages</topic><topic>Noise reduction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vuong, An Dinh</creatorcontrib><creatorcontrib>Vu, Minh Nhat</creatorcontrib><creatorcontrib>Huang, Baoru</creatorcontrib><creatorcontrib>Nguyen, Nghia</creatorcontrib><creatorcontrib>Le, Hieu</creatorcontrib><creatorcontrib>Vo, Thieu</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vuong, An Dinh</au><au>Vu, Minh Nhat</au><au>Huang, Baoru</au><au>Nguyen, Nghia</au><au>Le, Hieu</au><au>Vo, Thieu</au><au>Nguyen, Anh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Language-driven Grasp Detection</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2024-06-16</date><risdate>2024</risdate><spage>17902</spage><epage>17912</epage><pages>17902-17912</pages><eissn>2575-7075</eissn><eisbn>9798350353006</eisbn><coden>IEEPAD</coden><abstract>Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many meth-ods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this paper, we introduce Grasp-Anything++, a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping in-structions. We utilize foundation models to create a large-scale scene corpus with corresponding images and grasp prompts. We approach the language-driven grasp detection task as a conditional generation problem. Drawing on the success of diffusion models in generative tasks and given that language plays a vital role in this task, we propose a new language-driven grasp detection method based on dif-fusion models. Our key contribution is the contrastive training objective, which explicitly contributes to the denoising process to detect the grasp pose given the language instructions. We illustrate that our approach is theoretically sup-portive. The intensive experiments show that our method outperforms state-of-the-art approaches and allows real-world robotic grasping. Finally, we demonstrate our large-scale dataset enables zero-short grasp detection and is a challenging benchmark for future work.</abstract><pub>IEEE</pub><doi>10.1109/CVPR52733.2024.01695</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7075 |
ispartof | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.17902-17912 |
issn | 2575-7075 |
language | eng |
recordid | cdi_ieee_primary_10657374 |
source | IEEE Xplore All Conference Series |
subjects | Benchmark testing Computer vision contrastive learning Diffusion models grasp detection Grasping Natural languages Noise reduction Training |
title | Language-driven Grasp Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Language-driven%20Grasp%20Detection&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Vuong,%20An%20Dinh&rft.date=2024-06-16&rft.spage=17902&rft.epage=17912&rft.pages=17902-17912&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR52733.2024.01695&rft.eisbn=9798350353006&rft_dat=%3Cieee_CHZPO%3E10657374%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i675-9b11b459e96e4ef760c706168ba15d7580b20e1cc857b2988f7d9ab0374694593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10657374&rfr_iscdi=true |