Loading…

Latent Modulated Function for Computational Optimal Continuous Image Representation

The recent work Local Implicit Image Function (LIIF) and subsequent Implicit Neural Representation (INR) based works have achieved remarkable success in Arbitrary-Scale Super-Resolution (ASSR) by using MLP to decode Low-Resolution (LR) features. However, these continuous image representations typica...

Full description

Saved in:
Bibliographic Details
Main Authors: He, Zongyao, Jin, Zhi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 26035
container_issue
container_start_page 26026
container_title
container_volume
creator He, Zongyao
Jin, Zhi
description The recent work Local Implicit Image Function (LIIF) and subsequent Implicit Neural Representation (INR) based works have achieved remarkable success in Arbitrary-Scale Super-Resolution (ASSR) by using MLP to decode Low-Resolution (LR) features. However, these continuous image representations typically implement decoding in High-Resolution (HR) High-Dimensional (HD) space, leading to a quadratic increase in computational cost and seriously hindering the practical applications of ASSR. To tackle this problem, we propose a novel Latent Modulated Function (LMF), which decouples the HR-HD decoding process into shared latent decoding in LR-HD space and independent rendering in HR Low-Dimensional (LD) space, thereby realizing the first computational optimal paradigm of continuous image representation. Specifically, LMF utilizes an HD MLP in latent space to generate latent modulations of each LR feature vector. This enables a modulated LD MLP in render space to quickly adapt to any input feature vector and perform rendering at arbitrary resolution. Further-more, we leverage the positive correlation between modulation intensity and input image complexity to design a Controllable Multi-Scale Rendering (CMSR) algorithm, offering the flexibility to adjust the decoding efficiency based on the rendering precision. Extensive experiments demonstrate that converting existing INR-based ASSR methods to LMF can reduce the computational cost by up to 99.9%, accelerate inference by up to 57×, and save up to 76% of parameters, while maintaining competitive performance. The code is available at https://github.com/HeZongyao/LMF.
doi_str_mv 10.1109/CVPR52733.2024.02459
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10658029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10658029</ieee_id><sourcerecordid>10658029</sourcerecordid><originalsourceid>FETCH-LOGICAL-i679-50b63bb4513ca0c6dd7d72cb67f27e8cd6dacecb8e00ad26b0fbf2ed1cfacec3</originalsourceid><addsrcrecordid>eNotTt1KwzAYjYLgmH2DXeQFWr8kS9JcSnE6qEw28XbkVyptU9r0wre3010czg-Hw0FoQ6AgBNRj9fl-5FQyVlCg22IBVzcoU1KVjAPjDEDcohXlkucSJL9H2TR9AwCjhAhVrtCp1sn3Cb9FN7eLdHg39zY1scchjriK3TAnffG6xYchNd3CVexT089xnvC-018eH_0w-mnZ-Ws-oLug28lnV16j0-75o3rN68PLvnqq80ZIlXMwghmz5YRZDVY4J52k1ggZqPSldcJp660pPYB2VBgIJlDviA2XnK3R5n-18d6fh3F5Nv6cCQheAlXsF4hYVDo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Latent Modulated Function for Computational Optimal Continuous Image Representation</title><source>IEEE Xplore All Conference Series</source><creator>He, Zongyao ; Jin, Zhi</creator><creatorcontrib>He, Zongyao ; Jin, Zhi</creatorcontrib><description>The recent work Local Implicit Image Function (LIIF) and subsequent Implicit Neural Representation (INR) based works have achieved remarkable success in Arbitrary-Scale Super-Resolution (ASSR) by using MLP to decode Low-Resolution (LR) features. However, these continuous image representations typically implement decoding in High-Resolution (HR) High-Dimensional (HD) space, leading to a quadratic increase in computational cost and seriously hindering the practical applications of ASSR. To tackle this problem, we propose a novel Latent Modulated Function (LMF), which decouples the HR-HD decoding process into shared latent decoding in LR-HD space and independent rendering in HR Low-Dimensional (LD) space, thereby realizing the first computational optimal paradigm of continuous image representation. Specifically, LMF utilizes an HD MLP in latent space to generate latent modulations of each LR feature vector. This enables a modulated LD MLP in render space to quickly adapt to any input feature vector and perform rendering at arbitrary resolution. Further-more, we leverage the positive correlation between modulation intensity and input image complexity to design a Controllable Multi-Scale Rendering (CMSR) algorithm, offering the flexibility to adjust the decoding efficiency based on the rendering precision. Extensive experiments demonstrate that converting existing INR-based ASSR methods to LMF can reduce the computational cost by up to 99.9%, accelerate inference by up to 57×, and save up to 76% of parameters, while maintaining competitive performance. The code is available at https://github.com/HeZongyao/LMF.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9798350353006</identifier><identifier>DOI: 10.1109/CVPR52733.2024.02459</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; Arbitrary-Scale Super-Resolution ; Codes ; Computational Efficiency ; Continuous Image Representation ; Correlation ; Image representation ; Implicit Neural Representation ; Modulation ; Rendering (computer graphics) ; Vectors</subject><ispartof>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.26026-26035</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10658029$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10658029$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Zongyao</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><title>Latent Modulated Function for Computational Optimal Continuous Image Representation</title><title>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>The recent work Local Implicit Image Function (LIIF) and subsequent Implicit Neural Representation (INR) based works have achieved remarkable success in Arbitrary-Scale Super-Resolution (ASSR) by using MLP to decode Low-Resolution (LR) features. However, these continuous image representations typically implement decoding in High-Resolution (HR) High-Dimensional (HD) space, leading to a quadratic increase in computational cost and seriously hindering the practical applications of ASSR. To tackle this problem, we propose a novel Latent Modulated Function (LMF), which decouples the HR-HD decoding process into shared latent decoding in LR-HD space and independent rendering in HR Low-Dimensional (LD) space, thereby realizing the first computational optimal paradigm of continuous image representation. Specifically, LMF utilizes an HD MLP in latent space to generate latent modulations of each LR feature vector. This enables a modulated LD MLP in render space to quickly adapt to any input feature vector and perform rendering at arbitrary resolution. Further-more, we leverage the positive correlation between modulation intensity and input image complexity to design a Controllable Multi-Scale Rendering (CMSR) algorithm, offering the flexibility to adjust the decoding efficiency based on the rendering precision. Extensive experiments demonstrate that converting existing INR-based ASSR methods to LMF can reduce the computational cost by up to 99.9%, accelerate inference by up to 57×, and save up to 76% of parameters, while maintaining competitive performance. The code is available at https://github.com/HeZongyao/LMF.</description><subject>Aerospace electronics</subject><subject>Arbitrary-Scale Super-Resolution</subject><subject>Codes</subject><subject>Computational Efficiency</subject><subject>Continuous Image Representation</subject><subject>Correlation</subject><subject>Image representation</subject><subject>Implicit Neural Representation</subject><subject>Modulation</subject><subject>Rendering (computer graphics)</subject><subject>Vectors</subject><issn>2575-7075</issn><isbn>9798350353006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTt1KwzAYjYLgmH2DXeQFWr8kS9JcSnE6qEw28XbkVyptU9r0wre3010czg-Hw0FoQ6AgBNRj9fl-5FQyVlCg22IBVzcoU1KVjAPjDEDcohXlkucSJL9H2TR9AwCjhAhVrtCp1sn3Cb9FN7eLdHg39zY1scchjriK3TAnffG6xYchNd3CVexT089xnvC-018eH_0w-mnZ-Ws-oLug28lnV16j0-75o3rN68PLvnqq80ZIlXMwghmz5YRZDVY4J52k1ggZqPSldcJp660pPYB2VBgIJlDviA2XnK3R5n-18d6fh3F5Nv6cCQheAlXsF4hYVDo</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>He, Zongyao</creator><creator>Jin, Zhi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240616</creationdate><title>Latent Modulated Function for Computational Optimal Continuous Image Representation</title><author>He, Zongyao ; Jin, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i679-50b63bb4513ca0c6dd7d72cb67f27e8cd6dacecb8e00ad26b0fbf2ed1cfacec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace electronics</topic><topic>Arbitrary-Scale Super-Resolution</topic><topic>Codes</topic><topic>Computational Efficiency</topic><topic>Continuous Image Representation</topic><topic>Correlation</topic><topic>Image representation</topic><topic>Implicit Neural Representation</topic><topic>Modulation</topic><topic>Rendering (computer graphics)</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Zongyao</creatorcontrib><creatorcontrib>Jin, Zhi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Zongyao</au><au>Jin, Zhi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Latent Modulated Function for Computational Optimal Continuous Image Representation</atitle><btitle>2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2024-06-16</date><risdate>2024</risdate><spage>26026</spage><epage>26035</epage><pages>26026-26035</pages><eissn>2575-7075</eissn><eisbn>9798350353006</eisbn><coden>IEEPAD</coden><abstract>The recent work Local Implicit Image Function (LIIF) and subsequent Implicit Neural Representation (INR) based works have achieved remarkable success in Arbitrary-Scale Super-Resolution (ASSR) by using MLP to decode Low-Resolution (LR) features. However, these continuous image representations typically implement decoding in High-Resolution (HR) High-Dimensional (HD) space, leading to a quadratic increase in computational cost and seriously hindering the practical applications of ASSR. To tackle this problem, we propose a novel Latent Modulated Function (LMF), which decouples the HR-HD decoding process into shared latent decoding in LR-HD space and independent rendering in HR Low-Dimensional (LD) space, thereby realizing the first computational optimal paradigm of continuous image representation. Specifically, LMF utilizes an HD MLP in latent space to generate latent modulations of each LR feature vector. This enables a modulated LD MLP in render space to quickly adapt to any input feature vector and perform rendering at arbitrary resolution. Further-more, we leverage the positive correlation between modulation intensity and input image complexity to design a Controllable Multi-Scale Rendering (CMSR) algorithm, offering the flexibility to adjust the decoding efficiency based on the rendering precision. Extensive experiments demonstrate that converting existing INR-based ASSR methods to LMF can reduce the computational cost by up to 99.9%, accelerate inference by up to 57×, and save up to 76% of parameters, while maintaining competitive performance. The code is available at https://github.com/HeZongyao/LMF.</abstract><pub>IEEE</pub><doi>10.1109/CVPR52733.2024.02459</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-7075
ispartof 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, p.26026-26035
issn 2575-7075
language eng
recordid cdi_ieee_primary_10658029
source IEEE Xplore All Conference Series
subjects Aerospace electronics
Arbitrary-Scale Super-Resolution
Codes
Computational Efficiency
Continuous Image Representation
Correlation
Image representation
Implicit Neural Representation
Modulation
Rendering (computer graphics)
Vectors
title Latent Modulated Function for Computational Optimal Continuous Image Representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Latent%20Modulated%20Function%20for%20Computational%20Optimal%20Continuous%20Image%20Representation&rft.btitle=2024%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=He,%20Zongyao&rft.date=2024-06-16&rft.spage=26026&rft.epage=26035&rft.pages=26026-26035&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR52733.2024.02459&rft.eisbn=9798350353006&rft_dat=%3Cieee_CHZPO%3E10658029%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i679-50b63bb4513ca0c6dd7d72cb67f27e8cd6dacecb8e00ad26b0fbf2ed1cfacec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10658029&rfr_iscdi=true